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Abstract

In order to demonstrate that nonlinear tax systems may have surprising and

potentially undesirable side effects, we develop an evolutionary market entry

model in which firms decide on the basis of past profit opportunities whether or

not to enter a competitive market. Our main focus is on the case of a propor-

tional tax on positive profits. Such a piecewise-linear tax scheme induces a kink

in the profit functions of firms’ strategies, and may lead to abrupt changes in a

market’s dynamics, coexisting attractors and hysteresis problems. Since these

phenomena can also be observed in more general models, a proper understand-

ing of their basic mechanism may be helpful to explain the intricate behavior of

many economic systems.
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1. Introduction

Real tax systems often incorporate nonlinearities. As an example, consider

the case of a piecewise-linear profit tax according to which the profit tax rate

for firms is positive if they make a profit and zero if they make a loss. A direct

consequence of such a tax system is that it causes a kink in the firms’ profit

function: net profits equal gross profits if firms make a loss but only amount

to a fraction of gross profits if they make a profit. While there may be many

reasons why policy-makers raise nonlinear profit taxes - see Slemrod (1990),

Daveri and Tabellini (2000) and Mankiw et al. (2009) for reviews on optimal

taxation - it is important to note that a tax-induced kink in the firms’ profit

function may also be of relevance for the dynamic properties of the markets

involved. As is well known, the spectrum of possible behaviors of nonlinear

dynamical systems clearly exceeds that of linear dynamical systems. What is

presumably less known is that nonlinear dynamical systems with a kink, i.e.

piecewise dynamical systems, may give rise to even richer behaviors.

In this paper we consider the effect of a nonlinear tax schedule on firms’

decisions to enter a particular market. We take a behavioral approach in the

sense that past realized profits are the main determinant of firms’ decisions,

similar to the evolutionary models of Brock and Hommes (1997), Goeree and

Hommes (2000), Laselle et al. (2005), Branch and McGough (2008), Dieci and

Westerhoff (2010) and Tuinstra et al. (2014). Let us illustrate the implica-

tions of a tax-induced kink in this environment from an economic perspective.

Suppose that policy-makers impose a proportional tax on positive profits. The

imposition of such a tax causes a kink in the market’s dynamical system. As

long as firms’ strategies produce positive profits, firms have to pay profit taxes

and the kink in the profit functions of their strategies does not matter. Put

differently, the behavior of the firms then depends on the smooth curvature of

their relative past profit opportunities. However, when markets start to fluc-

tuate more strongly, for whatever reason, firms may occasionally make a loss.

In such an environment, the kink in firms’ relative profit functions comes into
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play. In particular, the marginal impact of a change in the profit generated

by a strategy now depends on the level of the gross profit, which may cause a

substantial change in the firms’ behavior.

The goal of our paper is to show that a tax-induced kink in the firms’ relative

profit function may have surprising and possibly unintended side effects. In

order to be able to study the consequences of nonlinear profit taxes, we develop

a simple evolutionary market entry model. The structure of the model and

our main results can be summarized as follows. Firms may enter a competitive

commodity market. The profitability of the market is unknown to firms when

they make their market entry decision; it depends to a significant extent on the

number of firms that simultaneously decide to enter it. Alternatively, firms can

realize a constant and positive outside profit. Moreover, firms face a piecewise-

linear profit tax according to which their profit tax rate is zero if they make a

loss and positive if they make a profit. Firms repeat their market entry decision

at the beginning of each period and decide partly on the basis of the past net

profitability of the market relative to the past net profitability of their outside

option. Our model is behavioral in the sense that we assume: the higher the

past relative profitability of the market, the more firms will enter it. Firms that

enter the market face a downward sloped demand function and determine their

supply by maximizing their expected profit. Finally, the price of the commodity

adjusts such that the market clears.

As it turns out, the dynamics of our model is due to a one-dimensional

nonlinear map. The map of the model is nonlinear because of the firms’ market

entry behavior and the piecewise-linear profit tax. The model typically has a

unique interior steady state in which the number of firms that enter the market

is such that the profitability of the market is equal to the profitability of the

firms’ outside option. As in Brock and Hommes (1997), the inner steady state of

the model eventually loses its local asymptotic stability as the firms’ sensitivity

to past performance, the so-called ‘intensity of choice’, increases. To be precise,

we observe a period-two cycle if firms react very strongly to profit differentials.

Then either too many firms enter the market and its profitability is relatively
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low or too few firms enter the market and its profitability is relatively high. As in

Schmitt and Westerhoff (2015), however, policy-makers can always re-establish

market stability by raising the profit tax rate. The basic intuition behind this

result is that higher profit tax rates reduce profit differentials, slowing down

firms’ market entry and exit behavior.

However, the main message of our paper is that piecewise-linear tax systems

may trigger abrupt changes in the dynamics of a market, lead to coexisting

attractors and cause hysteresis problems. These phenomena are a direct conse-

quence of the tax-induced kink in the firms’ profit function. As we will see, the

primary bifurcation of the inner steady state of our model is a period-doubling

bifurcation, i.e. we observe a low-amplitude period-two cycle once the inner

steady state becomes unstable. Since fluctuations in the market are rather

modest, its profitability initially remains positive. However, the amplitude of

the period-two cycle increases with the firms’ intensity of choice and, eventually,

fluctuations in the market are so high that firms are on the edge of realizing a

loss. Due to the kink in their profit function, firms sharply change their behav-

ior in such a situation. The low-amplitude period-two cycle then suddenly stops

existing, and the dynamics converges to a high-amplitude period-two cycle. In

technical terms, this phenomenon is caused by a border-collision bifurcation.

Interestingly, this high-amplitude period-two cycle already exists well be-

fore the primary bifurcation, i.e. there are parameter combinations where ei-

ther a locally stable steady state coexists with a locally stable high-amplitude

period-two cycle or where a locally stable low-amplitude period-two cycle co-

exists with a locally stable high-amplitude period-two cycle. The emergence of

this high-amplitude period-two cycle is also caused by the kink in the firms’

profit function. Profit taxes change the difference between profits and losses

so strongly that there is either a significant inflow or outflow of firms from the

market. Speaking again in technical terms, the high-amplitude period-two cycle

is created via a saddle-node bifurcation of a period-two cycle (in addition to the

stable cycle, another unstable period-two cycle is born at the bifurcation).

Since the map of the model is one-dimensional, we are able to compute (and
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visualize) the full basins of attraction of the coexisting attractors. Although the

basins of attraction of the coexisting attractors are well pronounced, occasional

exogenous shocks can push the dynamics from one basin of attraction to another.

The dynamics is then characterized by periods of low volatility alternating with

periods of high volatility. Due to the mixture of exogenous shocks, transient

dynamics and attractor switching, the overall behavior of the market is quite

erratic.

The bifurcation structure of the model may furthermore give rise to remark-

able hysteresis effects. For instance, if the market dynamics is characterized by a

low-amplitude period-two cycle which coexists with a high-amplitude period-two

cycle, a reduction in the profit tax rate may destroy the low-amplitude period-

two cycle and push the dynamics to the high-amplitude period-two cycle. A

return to the previous profit tax rate may not suffice to drive the dynamics

back to the low-amplitude period-two cycle since the system may remain in the

basin of attraction of the coexisting high-amplitude period-two cycle. A tempo-

rary increase to a much higher profit tax rate may then be needed to drive the

market back towards the low-amplitude period-two cycle. However, hysteresis

effects may also be of relevance for policy-makers’ tax revenues. Small changes

in the profit tax rate may cause substantial jumps in tax revenues, implying that

policy-makers’ tax revenue function is discontinuous. Due to the coexistence of

attractors, a return to the previous profit tax rate does not necessarily ensure

that policy-makers are able to realize the previous tax revenue.

In order to make our analysis as clear as possible, we keep our evolutionary

market entry model as simple as possible. Nevertheless, a detailed robustness

analysis reveals that similar effects of nonlinear tax systems can also occur in

much more general models. For instance, we also find these effects in models in

which consumer demand is isoelastic instead of linear; in which firms’ market

entry decisions are modeled via a discrete choice approach instead of the ex-

ponential replicator dynamics approach we use here; in which firms have naive

expectations instead of rational expectations about market prices; in which firms

switch between naive and rational price expectations instead of having a single

5



prediction rule; in which firms’ market entry decisions depend on a moving av-

erage of the past profits of the market instead of the last observed profit; or in

which the outside profits of firms evolve endogenously instead of being constant.

Note that there are many other economic settings in which market partic-

ipants rely on heterogeneous strategies and switch between them with respect

to their past performance. For instance, in the asset-pricing model of Brock

and Hommes (1998), market participants have the choice between technical and

fundamental trading rules; they prefer those rules that produced higher profits

in the last trading periods. De Grauwe and Grimaldi (2006) develop a similar

evolutionary approach to explain the volatile behavior of foreign exchange mar-

kets. Hommes and Zeppini (2014) suggest a behavioral model of technological

change in which firms’ decisions to innovate or imitate is profit-dependent. Re-

lated to this, Zeppini (2015) explores consequences of a pollution tax in a model

in which firms’ selection between a clean and a dirty technology depends on

the profitability of these technologies and on network externalities. Finally, we

mention Neugart and Tuinstra (2003), who study fluctuations in the demand

for higher education in a model in which students’ choices depend on past wage

differentials. Hommes (2013) provides many more examples and empirical sup-

port for this line of research. Our analysis suggests that regulating these markets

with respect to profit taxes, income taxes or wealth taxes will have an impact

on their dynamics. In particular, if these markets are subject to piecewise-linear

taxes, the fitness functions of agents’ strategies may be kinked, leading to the

emergence of surprising dynamic phenomena. Note that we are not arguing

against the imposition of nonlinear taxes. Our goal is merely to point out that

nonlinear taxes may have unexpected implications for the dynamic behavior of

economic systems, an aspect that policy-makers may wish to bear in mind.

Before moving on to our analysis, a few additional remarks are in order. In

the last couple of years, a number of papers have appeared that seek to ex-

plain various economic phenomena on the basis of piecewise maps. To name

but a few, Day (1982), Day and Shaffer (1987), Hommes (1995), Matsuyama

(1999), Matsuyama (2007), Gardini et al. (2008), Kubin and Gardini (2013) and
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Sushko et al. (2014) develop piecewise models to study irregular fluctuations

in economic activity; Huang and Day (1993), Huang et al. (2010), Huang and

Zheng (2012) and Tramontana et al. (2010, 2013) generate piecewise maps to

explore the dynamics of financial markets; and Agliari et al. (2011) and Com-

mendatore et al. (2014, 2015) propose using piecewise models to investigate the

process of industrial agglomeration. The success of these contributions is based

at least in part on the fact that piecewise maps may give rise to nonstandard

bifurcations. These include, for instance, abrupt and significant changes in the

dynamics of a model or the appearance/disappearance of coexisting attractors

as a model parameter varies. Of course, knowledge of such bifurcations may

be important in improving our understanding of how economic systems func-

tion, as illustrated by the aforementioned papers. For a general introduction to

this research area and up-to-date techniques for exploring piecewise maps, see

Avrutin et al. (2016).

The rest of our paper is organized as follows. In Section 2, we present our

model and derive a number of preliminary analytical results. In Section 3, we

discuss a number of surprising effects of nonlinear tax systems. In Section 4,

we check the robustness of our results. In Section 5, we summarize our main

findings and discuss various avenues for future research.

2. A stylized evolutionary market entry model

In this section, we introduce a simple evolutionary market entry model to

study the effects of nonlinear tax systems. After introducing the market envi-

ronment and presenting the dynamical system governing market entry decisions

in Section 2.1, we analyze its steady states and their dynamic properties in Sec-

tion 2.2. To make our results as clear as possible, we use a stylized benchmark

model in this section. In Section 4, we will demonstrate that the qualitative

results remain valid when extending the model.
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2.1. The market environment and market entry decisions

In our model, firms can choose to enter a competitive market for a homo-

geneous commodity. The profitability of competing in this market is unknown

to these firms when making their market entry decision; it depends to a sub-

stantial extent on the number of other firms that decide to enter this market. If

firms abstain from entering the market, they will realize constant (and positive)

outside profits. Either way, firms have to pay taxes on positive profits. Each

firm’s market entry decision is repeated at the beginning of each period, and

depends on the past profitability of the market relative to the profitability of

their outside option. The higher the relative past profitability of the market,

the more firms will enter the market. Firms that enter the market engage in

market research, enabling them to determine their profit-maximizing supply. In

the inner steady state of the model, the number of active firms in the market is

such that the profitability of entering the market equals the profitability of the

outside option. However, this steady state is not necessarily stable, and there

may be other (coexisting) types of attractors.

Let us now turn to the details of our model. Let Dt and St represent con-

sumer demand and supply by firms in the market at time step t, respectively.

The market clears in every period, that is

Dt = St. (1)

Consumer demand depends negatively on the current commodity price pt, and

is formalized as

Dt = 1− pt. (2)

We consider a fixed number N of potential producers, which have identical cost

functions for producing the commodity. By normalizing the total number of

firms to N = 1, the total supply generated by firms can be expressed as

St = ntqt, (3)

where nt stands for the fraction of firms entering the market and qt signifies the

supply generated by a single firm.
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Firms face a quadratic cost function Ct = 0.5q2t + F with fixed costs F > 0.

In addition, firms may need to pay profit taxes, where 0 ≤ τ < 1 describes

the tax rate levied on positive profits. Firms’ optimal production decisions are

derived from expected profit maximization, i.e.

argmax
qt

πet = argmax
qt

(1− τ)(petqt − Ct) for petqt − Ct ≥ 0

petqt − Ct for petqt − Ct < 0

(4)

and is given by qt = pet , where pet denotes the firms’ price expectations. We

assume that firms have rational expectations about market clearing prices, i.e.

pet = pt (5)

and thus the optimal supply generated by a single active firm amounts to

qt = pt. (6)

In Brock and Hommes (1997), rational expectations are available at constant

information costs. Here we may simply assume that rational expectations are

free.

Before we continue with our model, note that by combining (1), (2), (3) and

(6), we obtain

pt =
1

1 + nt
. (7)

Accordingly, the market clearing price in period t depends negatively on the

current number of firms active in this market. Of course, relation (7) also holds

in a steady state, implying that p∗ = 1
1+n∗ and n∗ = 1−p∗

p∗ . Since the total

number of firms is normalized to 1, it follows that 0 ≤ nt ≤ 1, 0.5 ≤ pt ≤ 1 and

0 ≤ Dt = St ≤ 0.5.

The fraction of firms entering the market is updated over time according to

an evolutionary approach, which is based on the idea that firms tend to choose

the alternative that was most profitable in the previous period. Although firms

have only an incomplete understanding of their economic environment, they

learn about the profitability of their alternatives from their own past experience
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and by observing the success of other firms.1 Since firms must only pay taxes

on positive profits, net profits realized by firms active in the market can be

expressed as

πt =

(1− τ)(0.5p2t − F ) if pt ≥
√

2F

0.5p2t − F if pt <
√

2F

. (8)

Note that for pt =
√

2F we obtain πt = 0. Exactly at this price level, the profit

function (8) has a kink for any positive profit tax rate.2 Net profits realized by

firms that are not active in the market are equal to π̂ = (1− τ)π̃ > 0. To justify

this simplifying assumption, we may regard the market under consideration

as a small local market for which the firms’ market entry and exit behavior

is of relevance, while the outside option stands for a large global market that

is insensitive to the inflow and outflow of a limited number of additional firms.

Alternatively, we may assume that firms can earn risk-free profits π̃ by investing

in safe capital markets.

Following, for instance, Tuinstra et al. (2014), we model the number of

active firms in the market via the exponential replicator dynamics. Hence,

nt =
nt−1exp[βπt−1]

nt−1exp[βπt−1] + (1− nt−1)exp[βπ̂]
=

nt−1
nt−1 + (1− nt−1)exp[β(π̂ − πt−1)]

.

(9)

Obviously, the higher the market’s past profitability, the more firms will enter it.

Parameter β > 0 is the intensity of choice, and measures how sensitive firms are

in selecting the most profitable alternative. The higher β is, the more firms will

choose the alternative that yielded higher profits in the previous period. Besides

1Note that, although firms base their entry decision on past performance, we assume

that once they have entered the market, they learn about the number of competitors and

have rational expectations about the market clearing price. Alternatively, we could make

the assumption that they also have naive (backward-looking) expectations about the market

clearing price. The analysis in Section 4 shows that this alternative assumption leads to

qualitatively similar results.
2Our results are robust with respect to the introduction of a tax break, i.e. when we let the

first π0 > 0 units of profits be exempted from the profit tax. The kink in the profit function

will then be at π0 instead of at 0, but qualitatively the results will be similar.
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directly observing the performance differential between the commodity market

and their outside option, (9) also captures the idea that firms tend to imitate the

behavior of more successful firms. Indeed, as can be seen from equation (9), due

to imitation, a very high (low) fraction of active firms in period t tends to lead

to a high (low) fraction of active firms in the subsequent period, even if market

profits are below (above) payoffs from the outside option. Imitation therefore

implies that profit differentials will have a significant effect on the number of

active firms for several subsequent periods, which introduces a modest level

of inertia in the evolutionary dynamics, not present in the standard discrete

choice model used by, e.g. Brock and Hommes (1997, 1998). The origins of the

(exponential) replicator dynamics can be traced back to Hofbauer and Sigmund

(1988) and Hofbauer and Weibull (1996), and related economic applications

include, amongst others, Droste et al. (2002), Branch and McGough (2008) and

Dindo and Tuinstra (2011).

2.2. Steady states and stability

Combining (7)-(9) reveals that the number of active firms evolves according

to

nt = f(nt−1) =


nt−1

nt−1+(1−nt−1)exp[β(1−τ)(π̃− 0.5
(1+nt−1)2

+F )]
if nt−1 ≤ 1−

√
2F√

2F

nt−1

nt−1+(1−nt−1)exp[β((1−τ)π̃− 0.5
(1+nt−1)2

+F )]
if nt−1 >

1−
√
2F√

2F

.

(10)

Note that once nt is determined, pt can be derived via (7), and πt follows from

(8). The dynamic properties of our model therefore depend solely on the one-

dimensional nonlinear map (10).

Inserting n∗ = nt = nt−1 in (10) and solving for n∗ reveals that our model

may have up to three steady states, namely n∗1 = 0, n∗2 =
1−
√

2(F+π̃)√
2(F+π̃)

and n∗3 = 1.

The two boundary steady states n∗1 and n∗3 always exist, while the existence of

the inner steady state n∗2 obviously requires that 0 < n∗2 < 1. To ensure that

n∗2 > 0, we assume from now on that A1: π̃+F < 0.5. Economically, assumption

A1 implies that profits in the market exceed payoffs from the outside option at
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the first steady state and thus motivates firms to enter the market when no other

firms do. In addition, assuming that π̃ + F > 0.125 would already suffice to

guarantee that n∗2 < 1. In fact, for π̃+F = 0.125, market profits would be equal

to outside profits at the third steady state. However, in order to be able to fully

explore the dynamic effects of nonlinear profit taxes, we assume that profits at

n∗3 = 1 are negative. We thus impose the stronger restriction A2: F > 0.125.

Together, A1 and A2 imply that 0.125 < F < 0.5 and 0 < π̃ < 0.375.

Moreover, let nk be the number of active firms for which profits from the

market become zero. Given restrictions A1 and A2, the three steady states of

map (10) have the following properties: n∗1 = 0 < n∗2 =
1−
√

2(F+π̃)√
2(F+π̃)

< nk =

1−
√
2F√

2F
< n∗3 = 1. The corresponding steady-state prices can be ordered as p∗3 =

0.5 < pk =
√

2F < p∗2 =
√

2(F + π̃) < p∗1 = 1; the ranking for the steady-state

net profits is π∗3 = 0.125−F < πk = 0 < π∗2 = (1− τ)π̃ < π∗1 = (1− τ)(0.5−F ).

Note that the inner steady state of the model does not depend on β or τ . Hence,

a change in the firms’ intensity of choice or a change in the profit tax rate has no

impact on the inner-steady state number of firms or on the inner steady-state

market clearing price. In contrast, both an increase in fixed costs F and an

increase in the profitability of the firms’ outside option π̃ make the market less

attractive for firms, driving up its inner steady-state equilibrium price. The

position of the kink in the map depends only on F . The higher the fixed costs,

the lower the number of firms that are able to make a profit in the market.

A sufficient condition ensuring that a steady state of a one-dimensional non-

linear map is locally asymptotically stable is given by |f ′(n∗)| < 1. Since

f ′(n∗1) = exp[β(1 − τ)(0.5 − (F + π̃))] and A1: π̃ + F < 0.5, it follows that

f ′(n∗1) > 1. As a result, n∗1 = 0 is an unstable steady state. The economic

reason for this outcome is that our setup implies that a small number of firms

realizing comparatively high profits will attract additional firms to the mar-

ket. Furthermore, the first derivative of map (10) evaluated at n∗3 = 1 is

f ′(n∗3) = exp[β(π̃(1 − τ) + F − 0.125]. Since A2: F > 0.125, f ′(n∗3) > 1 and

thus n∗3 = 1 is also an unstable steady state. The explanation for this outcome
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is a mirror image to that for the first steady state. A high number of active

firms realizing comparatively low profits drives some of these firms towards the

outside option.

For the inner steady state, we obtain f ′(n∗2) = 1−2β(1−τ)p∗2(1−p∗2)(p∗2−0.5).

Since 0.5 < p∗2 < 1, it is always guaranteed that f ′(n∗2) < 1. However, f ′(n∗2) =

−1 at β(1− τ) = (p∗2(1− p∗2)(p∗2 − 0.5))−1. Hence, local asymptotic stability of

n∗2 requires that

β(1− τ) <
1

(
√

2(F + π̃))(1−
√

2(F + π̃))(
√

2(F + π̃)− 0.5)
. (11)

Stability condition (11) has a number of important policy implications. As in

Brock and Hommes (1997), an increase in the intensity of choice eventually ren-

ders the inner steady state unstable. If firms have a growing tendency to switch

to the more profitable strategy, the market eventually becomes unstable since

aggregate demand fluctuates too strongly. As in Schmitt and Westerhoff (2015),

however, an appropriate increase in the profit tax rate can always re-establish

market stability. The higher the profit tax rate, the lower the profit differential

between firms’ strategies. This slows down firms’ market entry and exit behav-

ior. Recall that in Brock and Hommes (1997) and in Schmitt and Westerhoff

(2015), firms are always active in the same market and switch between naive

and rational expectations, while in our setup, firms always use rational price

expectations and switch between being active on the market and their outside

option. It is interesting to see that profit taxes have a stabilizing impact in both

model environments which are, of course, related but also differ in various ways.

It can furthermore be shown that the critical bifurcation value on the right-

hand side of (11) decreases with F and π̃ up to F = 2+
√
3

12−π̃ and π̃ = 2+
√
3

12−F ,

respectively, and then increases again. From this perspective, the impact of

fixed costs and outside profits on market stability may be regarded as ambigu-

ous. Finally, there is strong evidence that the primary bifurcation of the inner

steady state is a period-doubling bifurcation, i.e. the inner steady state becomes

unstable and a locally stable period-two cycle emerges. Indeed, a necessary con-

dition for the emergence of a period-doubling bifurcation is that the slope of the
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map becomes steeper than −1 at the steady state. Combined with supporting

numerical evidence (see, in particular, Figures 5 and 6), this is usually regarded

as strong evidence of a period-doubling bifurcation. Unfortunately, the period-

two cycle cannot be expressed analytically and thus its local stability can only

be studied numerically. See Gandolfo (2008) for an introduction to the theory

of nonlinear dynamical systems.

We can summarize our main analytical results in the following proposition.

Proposition 1: Given assumptions A1 and A2, map (10) has three steady states.

The boundary steady states n∗1 = 0 and n∗3 = 1 are always unstable while the

inner steady state n∗2 = (1 −
√

2(F + π̃))/
√

2(F + π̃) is locally asymptotically

stable for β(1− τ) < (
√

2(F + π̃)(1−
√

2(F + π̃))(
√

2(F + π̃)−0.5))−1. More-

over, the loss of stability is due to a period-doubling bifurcation.

Proposition 1 offers valuable insights into important properties of our model.

However, our stability analysis only holds locally, and there may be other types

of attractors. Also note that, although the profit tax rate has an effect on the

local stability properties of the inner steady state, these local stability proper-

ties are unaffected by the kink in the profit function. This is due to the fact that

at the inner steady state, market profits are always strictly positive. However,

as we will see in the next section, the piecewise-linear character of the profit

function plays an important role for the model’s global dynamics.

3. Dynamic effects of nonlinear tax systems

We show that piecewise-linear profit taxes may help to stabilize the fluctua-

tions of a market, but may also create abrupt changes in its dynamics, generate

coexisting attractors and cause hysteresis problems. The erratic behavior of

many economic systems may therefore be explained, in part, by the nonlin-

earity of their underlying tax schemes. As a base parameter setting for our

simulations, we use F = 0.26, π̃ = 0.05, β = 42 and τ = 0.5. This parameter

setting allows us to create a good visualization of our results, and satisfies our

economic assumptions. We continue as follows. In Section 3.1, we illustrate
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some properties of our model for our base parameter setting. In Section 3.2, we

explore how the four parameters of our model affect its dynamic behavior. In

Section 3.3, we highlight a number of economic effects of nonlinear profit taxes.

In Section 3.4, we demonstrate that the appearance and disappearance of coex-

isting attractors is due to a sequence of a saddle-node bifurcation of a period-two

cycle, a period-doubling bifurcation and a border-collision bifurcation.

3.1. An illustrative example

Let us start by summarizing a number of properties of our model for our base

parameter setting. The top left panel of Figure 1 shows how firms’ net profit

depend, in general, on their gross profit. While the slope of this function is +1

if firms make a loss, it reduces to 1− τ = 0.5 if they make a profit. Obviously,

the firms’ profit function has a kink where profit is zero. The top right panel

of Figure 1 documents how the net profits realized depend on the number of

active firms in the market. At the first steady state we have that n∗1 = 0, p∗1 = 1

and π∗1 = 0.12; at the third steady state we have that n∗3 = 1, p∗3 = 0.5 and

π∗3 = −0.135. The inner steady state is located at the intersection point of the

profit function of the market (solid line) and the profit function of the outside

option (dashed line), yielding n∗2 = 0.27, p∗2 = 0.787 and π∗2 = (1−τ)π̃ = 0.025.3

Obviously, profitability decreases with the number of firms active in the market.

Since profit taxes must only be paid on positive profits, the profit function for

the market has a kink at πk = 0, corresponding to nk = 0.387 and pk = 0.721.

The solid black line in the bottom left panel of Figure 1 shows the shape

of map (10). The three steady states in our model are located at the point

3All three steady states in our model can be derived directly from the exponential replicator

dynamics (9). For nt−1 = 0, πt−1 = π̂ and nt−1 = 1, the number of active firms comes at

rest, i.e. nt = nt−1. In particular, the inner steady state has the economically desirable

property that the number of active firms in the market is such that the profitability of being

active in the market is equal to the profitability of the firms’ outside option. As discussed in

Section 4, this is not the case if we apply the discrete choice approach of Brock and Hommes

(1997, 1998).
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Figure 1: The top left panel shows firms’ net profits versus their gross profits. The top right

panel shows realized net profits in the market (solid line) and realized net outside profits

(dashed line) versus the number of active firms in the market. The solid, dotted and dashed

lines in the bottom left panel show map (10), the upper branch of map (10) and the lower

branch of map (10), respectively. The bottom right panel shows times series for initial con-

ditions n0 = 0.38 (black line) and n0 = 0.40 (gray line). Base parameter setting: F = 0.26,

π̃ = 0.05, τ = 0.5 and β = 42.

where map (10) crosses the 45-degree line. Since the absolute value of the slope

of map (10) is larger than one at all three steady states, none of the model’s

steady states is stable. In fact, the critical values of the intensity of choice and

of the profit tax rate for the inner steady state to be stable are βc = 41.57 (given
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τ = 0.5) and τc = 0.505 (given βc = 42), respectively. Map (10) is nonlinear

because of the firms’ market entry behavior and the profit tax-induced kink.

The dotted gray line depicts the upper branch of map (10), coinciding with

map (10) for nt ≤ nk (where profits, and therefore the profit tax, are positive);

the dashed gray line shows the lower branch of map (10), coinciding with map

(10) for nt > nk (where the profit tax is zero, due to negative profits). Of

course, neither the upper nor the lower branch of map (10) has a kink. Finally,

the bottom right panel of Figure 1 presents time series of map (10) for our

base parameter set. For the initial condition n0 = 0.38, the dynamics converges

towards a low-amplitude period-two cycle (black line); for the initial condition

n0 = 0.40, the dynamics converges towards a high-amplitude period-two cycle

(gray line).

3.2. The role of the model’s four parameters

After presenting the properties of the model for our base parameter setting,

we now broaden our view and discuss how the behavior of the model depends on

its four parameters. In particular, we study how the map of the model and its

dynamics react to parameter changes. Let us continue with Figure 2. In all four

panels of this figure, the solid line represents the map for our base parameter

setting. The top left panel illustrates the dependence of map (10) on the firms’

intensity of choice β. If the number of active firms is very low in period t, it will

remain rather low in period t + 1. This is due to firms’ imitation behavior, as

expressed by the exponential replicator dynamics (9). However, if the number

of firms active in period t starts to increase, then the number of firms active in

period t + 1 also increases. Indeed, as long as there are not too many active

firms, firms will realize substantial profits. The precise number of firms which

enter the market depends on the intensity of choice. For instance, for β = 42

(solid line), the number of firms active in the market increases from nt = 0.1 to

about nt+1 = 0.49, while for β = 63 (dotted line) and β = 21 (dashed line), the

respective numbers are roughly nt+1 = 0.74 and nt+1 = 0.25. As the number of

firms active in period t increases further, the market’s profitability decreases and
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thus the number of firms active in period t+1 also decreases. At the inner steady

state, market profit is identical to the payoff from the firms’ outside option; at

the kink, market profit has dropped to zero. Note that the intensity of choice

does not affect the location of the inner steady state or the location of the kink

in the map. If the number of active firms exceeds nk = 0.387, active firms suffer

losses. The higher the intensity of choice, the fewer firms will therefore enter

the market. If nt is very high, the firms’ imitation behavior becomes dominant,

implying that nt+1 will also be high.

The top right panel of Figure 2 depicts map (10) for different values of the

profit tax rate (dotted line: τ = 0.25, solid line: τ = 0.5, dashed line: τ = 0.75).

Note that the three curves are identical to those in the top left panel for nt < nk.

Why is this the case? The upper branch of map (10) depends on the expression

β(1−τ). For the dotted line we have in the top left panel β(1−τ) = 63(1−0.5) =

31.5 and in the top right panel β(1 − τ) = 42(1 − 0.25) = 31.5; for the solid

line we obviously have in both top panels β(1 − τ) = 42(1 − 0.5) = 21; for the

dashed line we have in the top left panel β(1 − τ) = 21(1 − 0.5) = 10.5 and in

the top right panel β(1 − τ) = 42(1 − 0.75) = 10.5. Hence, for nt < nk, the

three lines in the top left and top right panel are identical. From an economic

perspective, this implies that, as long as the model dynamics is restricted to

the upper branch of map (10), any undesirable change in the firms’ intensity of

choice can, at least in principle, be offset exactly by an appropriate adjustment

in the profit tax rate such that the dynamics, say a low-amplitude period-two

cycle around the inner steady state of the model, remains as it was. For instance,

if the intensity of choice increases from β = 21 to β = 42, an increase in the

profit tax rate from τ = 0.5 to τ = 0.75 preserves the shape of map (10) to the

left of nk. To the right of nk, this relation does not hold. Scrutiny of map (10)

immediately reveals that the multiplicative nature of β and (1− τ) exists only

in its upper branch. However, we still observe that the number of firms active

in period t + 1 increases with the profit tax rate. This is because higher profit

tax rates negatively affect the profitability of the firm’s outside option, making

entering the market relatively more attractive for firms. Note also that the kink
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Figure 2: The shape of map (10) for different parameter constellations. All panels: the solid

line shows the shape of map (10) for our base parameter setting F = 0.26, π̃ = 0.05, τ = 0.5

and β = 42. Top left panel: the dotted line emerges for β = 63 and the dashed line for β = 21.

Top right panel: the dotted line emerges for τ = 0.25 and the dashed line for τ = 0.75. Bottom

left panel: the dotted line emerges for F = 0.2 and the dashed line for F = 0.32. Bottom

right panel: the dotted line emerges for π̃ = 0.01 and the dashed line for π̃ = 0.09.

becomes more pronounced for high tax rates (see, e.g. the path of the dashed

line).

The bottom left panel of Figure 2 represents the effects of fixed costs. Here

the dotted line emerges for F = 0.2; the solid line for F = 0.26; and the dashed

line for F = 0.32. The lower the firms’ fixed costs, the more market profits they
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can make and thus the more firms will enter the market. As can be seen, both

the inner steady state and the kink increase as fixed costs decrease. In contrast,

a reduction in the firms’ outside profit opportunities (see lower right panel of

Figure 2; dotted line: π̃ = 0.01, solid line: π̃ = 0.05, dashed line: π̃ = 0.09)

does not affect the kink in map (10). However, the lower the profitability of the

firms’ outside option, the more likely it is that they will enter the market, and

the more active firms will be at the inner steady state.

Based on these insights, we will now discuss how the four parameters of the

model may affect its dynamics. For this purpose, we make use of bifurcation

diagrams, as depicted in Figure 3. In the top left panel of Figure 3, we increase

parameter β in 400 discrete steps from 19 to 65. Recall that higher values

of the intensity of choice imply that firms react stronger to profit differentials

of their strategies. As predicted by our analytical results, the dynamics of our

model converges for β < 41.57 and for initial conditions close to the inner steady

state towards n∗2 = 0.27, followed by the emergence of a low-amplitude period-

two cycle. At about β = 42.62, the low-amplitude period-two cycle vanishes

abruptly, and we observe a convergence towards a high-amplitude period-two

cycle. However, for initial conditions further away from the inner steady state,

this high-amplitude period-two cycle already emerges at about β = 39.63, i.e.

well before the primary bifurcation. Moreover, the high-amplitude period-two

cycle turns, via a cascade of period-doubling bifurcations, into chaotic dynamics

as the intensity of choice increases further.

How does the profit tax rate affect the model dynamics? The top right panel

of Figure 3 shows a bifurcation diagram of map (10) for our base parameter

setting in which we vary parameter τ in 400 discrete steps between 0 and 1. The

general picture is that an increase in the profit tax rate manages to stabilize the

dynamics. However, we observe again the same qualitative bifurcation structure

as with respect to an increase in the firms’ intensity of choice, albeit in reverse

order. In the absence of profit taxes, the dynamics converges towards a high-

amplitude period-two cycle and the amplitude of this cycle decreases with the

profit tax rate. Between τ = 0.4925 and τ = 0.5051, the high-amplitude period-
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Figure 3: The top left, top right, bottom left and bottom right panels show bifurcation

diagrams of map (10) for the intensity of choice, the profit tax rate, the fixed costs and the

outside profits, respectively. The bifurcation parameters are increased in 400 discrete steps as

indicated on the axes. Simulations are repeated for different initial conditions. Base parameter

setting: F = 0.26, π̃ = 0.05, τ = 0.5 and β = 42.

two cycle coexists with a low-amplitude period-two cycle; between τ = 0.5051

and τ = 0.5325, it coexists with the inner steady state of the model. For

τ > 0.5325, the dynamics eventually approaches n∗2 = 0.27 for almost all initial

conditions. So far, we can conclude that the numerical investigation conducted

in this section confirms the analytical results obtained in the previous section:

an increase in the intensity of choice has a destabilizing effect on the model’s
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dynamics, and this destabilizing effect may be countered by an appropriate

increase in the profit tax rate.

The bottom left panel of Figure 3 reveals how fixed costs affect the dynamics

of our model. In this bifurcation diagram, parameter F is varied within the

boundaries given by assumptions A1 and A2, i.e. between F = 0.125 and

F = 0.45. As predicted by our analytical results, the inner steady state of the

model decreases with F and is locally stable for F < 0.2422 and F > 0.2799.

Within the range 0.2422 < F < 0.2799, the dynamics converges towards a

low-amplitude period-two cycle, but only if initial conditions are near the inner

steady state. For other initial conditions, the dynamics may settle between

F = 0.2120 and F = 0.2919 on a high-amplitude period-two cycle.

Similar results are observed for parameter π̃, as depicted in the bottom

right bifurcation diagram of Figure 3. Taking into account assumptions A1 and

A2, we increase outside profits from 0 to 0.24. The higher the outside profits,

the less attractive it is to enter the market. Consequently, n∗2 decreases with

π̃. Between 0.0322 < π̃ < 0.0699, the inner steady state of the model is not

attracting. Note that the ambiguous local stability effects of F and π̃ with

respect to n∗2 can be related to stability condition (11). As discussed in Section

2, the right-hand side of (11) reaches a minimum for F = 2+
√
3

12 − π̃ = 0.2610 or

π̃ = 2+
√
3

12 − F = 0.0510, respectively. For these values, which are close to our

base parameter setting, stability condition (11) is violated. For higher or lower

values of F or π̃, however, stability condition (11) may hold. Note also that

there exist multiple attractors for 0 < π̃ < 0.0639. In total, we can conclude

from all four panels of Figure 3 that abrupt changes in the dynamics of our

model and coexisting attractors may emerge for a broad range of parameter

values.

3.3. Further economic effects of nonlinear profit taxes

So far, we have seen that nonlinear profit taxes may cause abrupt changes in

the dynamics of a market and lead to coexisting attractors. Before investigating

the mechanisms behind these phenomena in more detail, we will show that
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additional exogenous shocks may increase the complexity of the dynamics of our

model quite substantially, and that parameter changes may lead to hysteresis

effects. Let us start with the consequences of exogenous shocks. Recall first that

for our base parameter setting, the dynamics of the model is characterized by the

coexistence of a low-amplitude period-two cycle and a high-amplitude period-

two cycle. The top left panel of Figure 4 shows how the number of active firms

evolves over time when exogenous shocks occasionally hit the dynamics (the

shocks are uniformly distributed between 0 and 0.2 and arrive with a probability

of 20 percent). As can be seen, the interaction between exogenous shocks,

transient dynamics and attractor switching creates quite intricate fluctuations.

In particular, tranquil periods alternate erratically with turbulent periods.

In the top right panel, we assume that policy-makers adjust the profit tax

rate every 20 periods. In the first 20 periods, τ = 0.5 and the dynamics converges

towards a low-amplitude period two-cycle. Between 20 < t ≤ 40, policy-makers

reduce the profit tax rate to τ = 0.4, and the dynamics approaches a high-

amplitude period-two cycle. Let us suppose that policy-makers are unhappy

with this high-volatility regime and want to re-establish the original dynamics.

Between 40 < t ≤ 60, policy-makers set the profit tax rate to the initial value,

i.e. τ = 0.5. As it turns out, policy-makers fail to achieve their goal: the

dynamics remains on the high-amplitude period-two cycle, albeit with a slightly

lower amplitude. In order to bring the dynamics back towards the initial low-

amplitude period-two cycle, policy-makers have to increase the profit tax rate

further. Setting τ = 0.54 between 60 < t ≤ 80 significantly reduces fluctuations

in the market. Once the number of firms has entered the basin of attraction

of the low-amplitude period-two cycle, policy-makers can adjust the profit tax

rate to its initial value τ = 0.5. In fact, the dynamics between 80 < t ≤ 100

resembles the dynamics occurring between 0 < t ≤ 20.

The bottom left panel shows the mean tax revenue generated from the mar-

ket when the tax rate increases from 0 to 1. As can be seen, higher tax rates

tend to increase policy-makers’ mean tax revenue. However, the tax revenue

function is discontinuous. Increasing the tax rate above τ = 0.5325 or de-
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Figure 4: The top left panel shows a simulation run of map (10) with occasional exogenous

shocks (the shocks are uniformly distributed between 0 and 0.2 and arrive with a probability

of 20 percent). The top right panel shows a simulation run of map (10) with time-varying

tax rates, i.e. τ = 0.5 for 0 < t ≤ 20, τ = 0.4 for 20 < t ≤ 40, τ = 0.5 for 40 < t ≤ 60,

τ = 0.54 for 60 < t ≤ 80 and τ = 0.5 for 80 < t ≤ 100. The bottom left panel shows the

mean tax revenue generated from the market when the tax rate is increased from 0 to 1. The

bottom right panel shows the same except that the tax rate for outside profits is fixed to 0.5,

while the tax rate for the market’s profits is increased from 0 to 1. Base parameter setting:

F = 0.26, π̃ = 0.05, τ = 0.5 and β = 42.

creasing the tax rate below τ = 0.4925 may produce significant jumps in tax

revenues. Taking our simulations literally, further computations reveal that the

tax revenue changes at the first discontinuity point from 0.0024 to 0.0044, i.e. by
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about 83 percent, and at the second discontinuity point from 0.0041 to 0.0071,

i.e. by about 73 percent. Between τ = 0.4925 and τ = 0.5325, policy-makers’

tax revenues depend on initial conditions - they can be either relatively high or

relatively low. As a result, hysteresis effects may also set in. If policy-makers

decrease the profit tax rate below τ = 0.4925, their tax revenue may shrink

substantially. This is the case when the dynamics turns from a low-amplitude

period-two cycle in which firms always make a profit to a high-amplitude period-

two cycle in which firms only make a profit every second period. If policy-makers

want to increase their tax revenues to the old level, it may not be sufficient to

return to the previous tax rate. The dynamics are most likely to remain on the

high-amplitude period-two cycle on which firms’ profits are lower on average.

What is needed is a temporarily higher tax rate to guide the dynamics towards

the less volatile original attractor.4

Finally, the bottom right panel of Figure 4 depicts the development of the

mean tax revenue generated from the market when the tax rate for outside

profits is fixed at 0.5, while the tax rate for market profits is increased from 0 to

1. For this version of our model, a typical Laffer curve emerges. For both low

and high tax rates, the mean tax revenue is relatively low; for intermediate tax

rates, the mean tax revenue is relatively high. The explanation for the reduction

in tax revenue is that higher tax rates reduce the profitability of being active

in the market and, consequently, a growing number of firms leave the market.

Interestingly, this policy experiment also gives rise to hysteresis effects and a

discontinuous tax revenue function. A change in the profit tax rate may cause

a jump in tax revenues, and a simple return towards the original tax rate may

not suffice to re-establish the previous level of tax revenues.5

4A similar picture emerges if we plot the mean tax revenue generated from the market and

the firms’ outside option as a function of the tax rate.
5We observe the same qualitative results if we set the tax rate for the firms’ outside profits

to lower or higher values. In fact, setting the tax rate for outside profits to zero and halving

the profitability of the firms’ outside option is identical to the experiment conducted above.
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3.4. Appearance and disappearance of coexisting attractors

Our analysis suggests that nonlinear profit taxes may stabilize the dynamics

of economic systems. Nevertheless, it is important for us to stress that such tax

systems may also give rise to unexpected dynamic phenomena, an aspect that

policy-makers may wish to bear in mind. Let us next explore the mechanism

behind these intriguing dynamic phenomena in more detail. The two most

important parameters of our model are the firms’ intensity of choice and the

profit tax rate. In Figures 5 and 6, we first present one-dimensional bifurcation

diagrams for these parameters. In contrast to Figure 3, however, we now focus

on a smaller parameter range of β and τ to highlight the area that produces

multistability, that is, the area where multiple attractors coexist. In order to

discuss the joint impact of the intensity of choice and the profit tax rate on

the model’s dynamics, we turn our attention in Figure 7 to a series of two-

dimensional bifurcation diagrams. Finally, we use Figures 8 and 9 to show that

the appearance and disappearance of coexisting attractors is linked directly to

the tax-induced kink in the map of the model.

Let us start with the intensity of choice. The top panel of Figure 5 shows

a bifurcation diagram of map (10) in which β is increased from 38.5 to 44.5.

One advantage of our model is that its dynamics depends only on a single

initial condition. Since the number of active firms is restricted to be between

0 and 1, we can visualize attractors’ whole basins of attraction in this panel,

too. As already mentioned, a fixed point x̄ of the one-dimensional map xt =

f(xt−1) is locally asymptotically stable if |f ′(x̄)| < 1. Similarly, a period-two

cycle (x̄1, x̄2) of the one-dimensional map xt = f(xt−1) is locally asymptotically

stable if |f ′(x̄1)f ′(x̄2)| < 1. In the following, we refer to such derivatives as

the attractors’ eigenvalues. Accordingly, the bottom panel of Figure 5 shows

the evolution of the eigenvalues of attractors depicted in the top panel (the

eigenvalues of the boundary steady states are outside the visible plot range).

Clearly, as long as the absolute value of an attractor’s eigenvalue is below one,

the attractor is locally stable.

Figure 5 reveals a number of interesting insights. For β < 39.63, almost
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Figure 5: The top panel shows a bifurcation diagram of map (10) for the intensity of choice

along with the attractors’ basins of attraction. The bottom panel shows the eigenvalues of

the attractors depicted in the top panel (the eigenvalues of the outer steady states are outside

the visible plot range). Parameter β is increased in 200 steps from 39 to 45. Initial conditions

are increased in 200 steps from 0 to 1. Other parameters: F = 0.26, π̃ = 0.05 and τ = 0.5.
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all initial conditions (light red area) converge towards the inner steady state

(solid red line). The only exceptions exist with the coordinates of the boundary

steady states (dashed brown lines). At about β = 39.63, we observe a saddle-

node bifurcation of a period-two cycle, i.e. the simultaneous birth of a locally

stable high-amplitude period-two cycle (solid blue lines) and an unstable period-

two cycle (dashed pink lines). Between β = 39.63 and β = 41.57, roughly half

of all possible initial conditions converge to the inner steady state, while the

other half (light blue area) settle down on the high-amplitude period-two cycle.

The basins of attraction of the coexisting attractors - made up of several pieces

- may thus be regarded as robust.

At around β = 41.57, the inner steady state becomes unstable (dashed red

line) and a locally stable low-amplitude period-two cycle (solid yellow lines)

emerges. Its basin of attraction consists of several parts (light yellow area).

Note that these bifurcations are mirrored in the development of attractors’

eigenvalues. Exactly at the period-doubling bifurcation, the eigenvalue of the

inner steady state (red line) drops below −1, while the eigenvalue of the low-

amplitude period-two cycle (yellow line) starts at +1 and then decreases. With

respect to the saddle-node bifurcation of the period-two cycle, we observe that

the eigenvalue of the high-amplitude period two-cycle (blue line) is +1 at the

bifurcation and then decreases with the intensity of choice. Simultaneously, the

eigenvalue of the unstable period-two cycle (pink line) is above +1 and increases

with the intensity of choice.

At around β = 42.62, the unstable period-two cycle touches the low-amplitude

period-two cycle, after which both attractors disappear. In fact, the upper of

the two contact points is at nk = 0.387, i.e. the number of firms at which map

(10) has a kink and for which the fluctuations of the low-amplitude period-two

cycle become so large that profits for active firms become negative every second

period. At this point, the dynamics of the model depends on both branches

of map (10). For β > 42.62, almost all initial conditions approach the high-

amplitude period-two cycle. And, in fact, the only eigenvalue remaining in the
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stability domain is that of the high-amplitude period-two cycle.6

The design of Figure 6 is identical to that of Figure 5, except that we now

focus on the profit tax rate. To be precise, we set β = 42 and increase the

profit tax rate from 46 to 54 percent. A comparison of the top panels of Fig-

ures 5 and 6 immediately reveals that an increase in the profit tax rate reverses

the bifurcation structure that emerges when the intensity of choice increases.

Between 0.46 < τ < 0.4925, almost all initial conditions converge towards the

high-amplitude period-two cycle, whereas for 0.4925 < τ < 0.5051, the dy-

namics either remains on the high-amplitude period-two cycle or approaches a

low-amplitude period-two cycle. The low-amplitude period-two cycle is limited

to the left by a border-collision bifurcation and to the right by a period-doubling

bifurcation. At the border-collision bifurcation, fluctuations in firms’ profits be-

come so strong that the firms are about to make a loss. This is where the

kink in the firms’ relative profit function, respectively the kink in the model’s

dynamical system, comes into play. A tiny reduction in the profit tax rate in-

creases fluctuations in the market, destroying the existence of the low-amplitude

period-two cycle. At the period-doubling bifurcation, firms’ market entry and

exit behavior is such that the inner steady state of the model is about to become

unstable. A tiny increase in the profit tax rate reduces fluctuations and dissolves

the low-amplitude period-two cycle. For 0.5051 < τ < 0.5325, the dynamics is

characterized by the coexistence of an attracting high-amplitude period-two cy-

cle and a locally stable steady state. In order to terminate the high-amplitude

period-two cycle, policy-makers have to set the profit tax rate above 0.5325. If

they do this, we observe the reversal of a saddle-node bifurcation of a period-

two cycle, and the market converges for almost all initial conditions towards n∗2.

The eigenvalues of attractors, depicted in the bottom panel of Figure 6, support

this sequence of bifurcations.

Figure 7 depicts the joint impact of the intensity of choice and the profit

6Related, yet even more complex, bifurcation structures are described in Puu and Agliari

(2002) and Sushko et al. (2005).
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Figure 6: The top panel shows a bifurcation diagram of map (10) for the tax rate along with

the attractors’ basins of attraction. The bottom panel shows the eigenvalues of the attractors

depicted in the top panel (the eigenvalues of the outer steady states are outside the visible

plot range). Parameter τ is increased in 200 steps from 0.46 to 0.54. Initial conditions are

increased in 200 steps from 0 to 1. Other parameters: F = 0.26, π̃ = 0.05 and β = 42.
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Figure 7: The four panels show two-dimensional bifurcation diagrams for the tax rate versus

the intensity of choice (light red: steady state, yellow: low-amplitude period-two cycle, light

blue: high-amplitude period-two cycle, magenta: steady state coexisting with high-amplitude

period-two cycle, cyan: low-amplitude period-two cycle coexisting with high-amplitude period-

two-cycle, green: steady state or low-amplitude period-two cycle coexisting with other attrac-

tors, black: other attractors). Parameters τ and β are varied as indicated on the axes.

Simulations are based on initial conditions n0 = 1.005 · n2
∗ and n0 = 0.5. Other parameters:

F = 0.26 and π̃ = 0.05, except bottom right panel in which π̃ = 0.01.

tax rate on the dynamics of the model. The panels of Figure 7 are designed as

follows. Parameters β and τ are varied as indicated on the axes with a grid res-

olution of 200 times 200. For each of these 40,000 parameter combinations, we
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determine the qualitative nature of the dynamics after 10,000 observations. For

computational reasons, we repeat this exercise for two different initial conditions

only, given by n0 = 1.005 · n∗2 and n0 = 0.5. The identified area of coexisting

attractors thus represents a minimal area of multistability. Parameter com-

binations for which the dynamics always converges to the inner steady state

of the model, a low-amplitude period-two cycle and a high-amplitude period-

two cycle are marked light red, yellow and light blue, respectively. Parameter

combinations for which the high-amplitude period-two cycle coexists with the

inner steady state of the model are shown in magenta; those for which the high-

amplitude period-two cycle coexists with the low-amplitude period-two cycle

are marked cyan. Finally, regions shown in green stand for situations in which

the inner steady state of the model or the low-amplitude period-two cycle co-

exist with other types of attractors and black regions capture all other types of

dynamic behaviors.

In order to obtain a first picture of what could happen, in the top left panel

of Figure 7 we vary the tax rate between 0 < τ < 1 and the intensity of choice

between 20 < β < 80. As already predicted by our analytical results, a higher

intensity of choice requires a higher tax rate to stabilize the inner steady state

of the model.7 The top right panel of Figure 7 restricts the tax rate between

0.1 < τ < 0.38 and the intensity of choice between 23 < β < 33. This zoom-in

reveals that multistability can also be observed for lower tax rates. For instance,

if the tax rate is fixed to 24 percent, an increase in the intensity of choice implies

that the dynamics first converges towards the inner steady state of the model

(light red), then to a low-amplitude period-two cycle (yellow), then either to

a low-amplitude period-two cycle or a high-amplitude period-two cycle (cyan),

and finally to a high-amplitude period-two cycle (light blue). This sequence

7Given F = 0.26 and π̃ = 0.05, stability condition (11) can be expressed as τ = 1 −

20.7852/β. For visibility reasons, we do not present this condition in Figure 7. However, the

stability border of the inner steady state of the model is located where the light red region

ends or, if it exists, where the magenta region ends.
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of bifurcations can be observed for tax rates between approximately 13 and

30 percent. If the tax rate is below 13 percent, an increase in the intensity

of choice does not lead to multistability or to abrupt changes in the dynamics

(at the moment when it is born, the amplitude of the high-amplitude period-

two cycle is comparable to the final amplitude of the low-amplitude period-two

cycle). The explanation is that, while the map still has a kink when τ < 0.13,

the kink is too modest to have a significant impact on the dynamics of the

model.

If the tax rate is above 30 percent, we again observe the bifurcation structure

discussed in Figures 5 and 6. This can be seen better in the bottom left panel

of Figure 7, in which the tax rate is increased from 0.46 to 0.54 (as in Figure

6) and the intensity of choice varies between 39 and 45 (as in Figure 5). In

this parameter domain, the sequence of the saddle-node bifurcation of a period-

two cycle, the period-doubling bifurcation and the border-collision bifurcation

is well developed. In the bottom right panel of Figure 7, we deviate from

our base parameter setting by assuming that π̃ = 0.01. Obviously, for other

parameter combinations the area of multistability, in particular the coexistence

of the model’s inner steady state with a high-amplitude period-two cycle, may

be much larger and involve much smaller tax rates. In addition, even more

complicated examples of multistability emerge within the green parameter area.

For instance, for τ = 0.65 and β = 62, the inner steady state of the model is

locally stable and coexists with a chaotic attractor.

Figures 8 and 9 demonstrate how the shape of the model’s map and its

dynamic properties depend on the intensity of choice and on the profit tax rate.

The aim of these figures is to show that the appearance and disappearance of

coexisting attractors is caused directly by the tax-induced kink in the map.

The left panels of Figures 8 and 9 present the first iterate of map (10), that is

nt+1 = f(nt). These panels also contain a number of typical trajectories, for

which the color coding corresponds to that used in Figures 5 and 6. As already

mentioned, the steady states of our model are located where map (10) crosses

the 45-degree line. Steady states and period-two cycles of our model can be
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Figure 8: The first and transformed second iterate of map (10) and the transformed second

iterate of the upper branch of map (10) for different values of the intensity of choice, respec-

tively. The left panels also contain some exemplary trajectories. First line: β = 39. Second

line: β = 39.63. Third line: β = 40. Fourth line: β = 41.5. Other parameters: F = 0.26,

π̃ = 0.05 and τ = 0.5.

found where the second iterate of map (10), that is nt+2 = f(f(nt)), crosses

the 45-degree line. For reasons of clarity, the central panels of Figures 8 and
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9 show the function gt+2 = 100(f(f(nt)) − nt), which we call the transformed

second iterate of map (10). Note that gt+2 indicates the change in the number

of firms active between period t and period t+ 2. For gt+2 > 0, the number of

active firms increases over the next two periods, while for gt+2 < 0 it decreases.

Accordingly, steady states and period-two cycles of our model are located where

the transformed second iterate of map (10) becomes zero. The right panels of

Figures 8 and 9 show the transformed second iterate of the upper branch of

map (10), which we denote by ut+2 for convenience. Restricting the dynamics

to the upper branch of map (10) means economically that firms receive a tax

compensation if they make a loss and technically that such a model version is

free of any kinks. Comparing functions gt+2 and ut+2 thus enables us to identify

the effects of the tax-induced kink on the dynamics of the model.8

In the first line of panels in Figure 8, we set β = 39. As a result, the

inner steady state is locally stable; the boundary steady states are unstable;

and there are no period-two cycles. We already know from Figure 5 that for

this parameter constellation almost all initial conditions approach the inner

steady state. One example of a trajectory is plotted in the left panel. The

transformed second iterate of map (10) is zero at the three steady states of the

model. Note that the same is true for ut+2. In the second line of panels in

Figure 8, we set β = 39.63. Now the transformed second iterate of map (10)

additionally touches the zero line twice, implying the birth of a high-amplitude

period-two cycle. Accordingly, we see in the left panel two trajectories, one

of which converges to the inner steady state while the other converges to the

high-amplitude period-two cycle. From the moment the period-two cycle starts

8An alternative experiment to check the effects of such a tax-induced kink would be to

set the tax rate to zero and to halve the intensity of choice. As long as the dynamics of this

alternative experiment remains within the upper branch of map (10), it would be identical to

that discussed above. Without a profit tax, however, there is no difference between the upper

and lower branch of map (10), and therefore this alterative experiment does not have a kink

either. Both experiments produce very similar results. In fact, for the parameter settings used

in Figures 8 and 9, virtually no graphical differences are visible between the two experiments.
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to exist, it is characterized by a high amplitude and, as we know from Figure 5,

roughly approached from half of all possible initial conditions.

Even if the analysis turns out to be cumbersome, a good understanding of

the causes of the model’s bifurcation structure necessitates a deeper discussion

of the properties of gt+2. First of all, gt+2 has two kinks. The kink at nt = 0.387

is the one we already know from map (10). Note that gt+2 changes direction

at this kink and possesses a local maximum for a slightly higher value of nt.

Since gt+2 decreases between the model’s inner steady state and nt = 0.387,

an increase in nt implies that the number of active firms will decrease more

strongly in this region over the next two periods (which pushes the dynamics

towards n∗2). At nt = 0.387, the number of active firms is such that their profits

are zero. If nt exceeds 0.387, firms suffer a loss and the kink in the firms’ profit

function comes into play. Suppose that firms (start to) make losses in period t.

Since the number of active firms sharply reduces in period t + 1, profitability

spikes simultaneously. As a result, relatively more firms become active again in

period t + 2. In the first line of panels in Figure 8, the local maximum of gt+2

is still negative, implying that more firms in total will exit the market over the

next two time steps. In the second line of panels in Figure 8, the local maximum

of gt+2 is exactly zero. Now the number of active firms will not change over the

next two time steps, i.e. a high-amplitude period-two cycle is established. At

the upper value of this cycle, firms make substantial losses and thus retreat from

the market. At the lower value of this cycle, firms make substantial profits and

re-enter the market. Both forces are balanced exactly at the high-amplitude

period-two cycle.

A similar interpretation can be given for the kink at nt = 0.1605 (which is,

since f(0.1605) = 0.387, the preimage of the kink at nt = 0.387). Transgressing

nt = 0.1605 from right to left reduces the increase in the number of active firms

within the next two periods. The reason for this is as follows. In the case of a

low number of active firms, profitability is so high that the inflow of additional

firms is such that profits become negative in the next time step. As a result,

many firms retreat from the market. For β = 39.63 and τ = 0.5, the retreat of
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firms may exactly offset the initial inflow of firms, which completes the high-

amplitude period-two cycle described above. It is this complicated bending of

gt+2 that first creates and, as we will see in the sequel, eventually destroys the

phenomenon of coexisting attractors. In contrast, the right panels in Figures 8

and 9 reveal that such kink-induced bending is absent for ut+2.

In the third line of panels in Figure 8, we set β = 40. As can be seen, the

transformed second iterate of map (10) crosses the zero line seven times and,

consequently, the map is characterized by a locally stable inner steady state;

two unstable boundary steady states; a locally stable high-amplitude period-two

cycle; and an unstable period-two cycle.9 From the path of gt+2 it also becomes

clear that the unstable period-two cycle separates the basin of attraction of the

model’s inner steady state from that of the high-amplitude period-two cycle (see

also the dotted pink line in Figure 5). For instance, gt+2 is negative (positive)

to the left (right) of the upper value of the unstable period-two cycle, implying

that the number of active firms is pushed towards the inner steady state of the

model (upper value of the high-amplitude period-two cycle). In the fourth line

of panels in Figure 8, we set β = 41.5. The inner steady state is about to lose

its local stability, the fluctuations of the high-amplitude period-two cycle have

increased while the amplitude of the unstable steady state has decreased. This

is the situation just before the analytically detected primary bifurcation of the

inner steady state.

Figure 9 continues the analysis of Figure 8. In the first line of panels in Figure

9, we set β = 42. For this parameter constellation, the transformed second

iterate of map (10) is zero at nine positions. In total, there are three unstable

steady states; an unstable period-two cycle; a locally stable high-amplitude

period-two cycle; and a locally stable low-amplitude period-two cycle (see also

Figure 1, which is based on the same (base) parameter setting). Note that

9The computation of the unstable period-two cycle, as depicted in Figures 5, 6, 8 and 9,

rests on finding the intersection points of the transformed second iterate of map (10) with the

zero line via a grid-search procedure.
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Figure 9: The first and transformed second iterate of map (10) and the transformed second

iterate of the upper branch of map (10) for different values of the intensity of choice, respec-

tively. The left panels also contain some exemplary trajectories. First line: β = 42. Second

line: β = 42.5. Third line: β = 43. Fourth line: β = 65. Other parameters: F = 0.26,

π̃ = 0.05 and τ = 0.5.

gt+2 and ut+2 exhibit the same bending near the inner steady state of the

model. Since the slope of gt+2 (and of ut+2) is positive at n∗2, the model’s
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inner steady state is unstable. The economic reason for this is that firms react

quite aggressively to profit differentials. At the low-amplitude period-two cycle,

the market entry and exit behavior of firms is balanced. Since the market’s

profitability is positive along this cycle, we also observe it for ut+2.

In the second line of panels in Figure 9, we set β = 42.5. Note that the

unstable steady state and the low-amplitude period-two cycle have become very

close and are about to touch. In the third line of panels in Figure 9, we set

β = 43. Since the low-amplitude period-two cycle and the unstable period-

two cycle vanish after they touch, the transformed second iterate of map (10)

crosses the zero line only five times. Now almost all trajectories converge to

the high-amplitude period-two cycle. This is a dramatic change in the model

dynamics. For slightly lower values of the intensity of choice, the dynamics

could have settled on a low-amplitude period-two cycle. Comparing gt+2 and

ut+2 reveals again that this is due to the tax-induced kink of the model which

implies that gt+2 changes its direction at the kink, destroying the low-amplitude

period-two cycle. Clearly, ut+2 still indicates the existence of an attracting low-

amplitude period-two cycle for the kink-free alternative model. In the fourth

line of panels in Figure 9, we set β = 65. While there still exist three unstable

steady states and an unstable high-amplitude period-two cycle, the dynamics is

now chaotic (the bifurcation diagram in the top left panel of Figure 3 reveals that

chaos emerges for a broad range of β values). Further simulations (not depicted)

indicate that the alternative model is still characterized by an attracting period-

two cycle (this cycle also remains the unique attracting cycle for much higher

values of the intensity of choice).

4. Robustness checks

In order to demonstrate that our main results do not hinge on the specific

setup of our stylized behavioral market entry model, we discuss a number of

robustness checks in this section. In particular, we modify consumers’ demand,

vary firms’ expectation formation and market entry behavior, and endogenize
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the firms’ outside option. Our results, summarized in Figure 10, indicate that

the main bifurcation sequence discussed in this paper may be regarded as an

astonishingly robust phenomenon. Despite substantial model changes, effecting

the equations of the model, its dimension and parameters, we can detect abrupt

changes in the dynamics of the model, coexisting attractors and hysteresis ef-

fects.

In the top left panel of Figure 10, we have substituted the linear demand

function (2) by the isoelastic demand function Dt = k
pt

with k = 0.25. Param-

eter β serves as our bifurcation parameter; the other parameters are F = 0.2,

π̃ = 0.05 and τ = 0.5. Note that we have here, amongst other things, an exam-

ple where the low-amplitude period-two cycle coexists with a high-amplitude

period-four cycle. In the top right panel of Figure 10, we assume that firms

have naive expectations pet = pt−1 instead of rational expectations (5). Such

a modification turns our model into a two-dimensional map. Nevertheless, co-

existing attractors and abrupt changes in the dynamics of our model can be

observed. The downward shift of attractors after the saddle-node bifurcation of

a period-two cycle reflects a drop in firms’ profits due to their use of a naive

expectation rule.

In the center left panel of Figure 10, we exchange the exponential replica-

tor dynamics (9) by the discrete choice approach nt = exp[βπt−1]
exp[βπt−1]+exp[βπ̂]

. The

discrete choice approach is very popular within heterogeneous agent models,

see, e.g. the seminal contributions by Brock and Hommes (1997, 1998). In the

center right panel of Figure 10, we also use the discrete choice approach, but

additionally assume that firms rely on naive expectations. In such versions of

our model, the inner steady state depends on the intensity of choice; it is not

guaranteed that the market’s profitability at the inner steady state is equal to

the profitability of the firms’ outside option. From this perspective, the discrete

choice approach has stronger behavioral implications for the learning behavior of

firms. In any case, the bifurcation structure of the original model survives these

model changes (the parameter setting for the left and right panel is F = 0.2,
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Figure 10: Bifurcation diagrams for different model versions with respect to the firm’s intensity

of choice. Top left: Isoelastic demand function. Top right: Naive expectations. Central left:

Discrete choice approach. Central right: Discrete choice approach and naive expectations.

Bottom left: Memory in the fitness function. Bottom right: Endogenous outside profits.

Parameter settings are reported in Section 4.
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π̃ = 0.05 and τ = 0.5).10

In the bottom left panel of Figure 10, the firms’ market entry behavior de-

pends on a smoothed profit measure, i.e. vt = (1 −m)πt + mvt−1, where the

firms’ memory is bounded between 0 < m < 1. Accordingly, the replicator dy-

namics (9) turns into nt = nt−1exp[βvt−1]
nt−1exp[βvt−1]+(1−nt−1)exp[βπ̂]

. Results are displayed

for a memory of m = 0.25, while the other parameters are F = 0.26, π̃ = 0.05,

and τ = 0.5. Although this adaptation increases the dimension of our model

again, the emerging bifurcation pattern is very close to what we observed for

our original model. Similar results may also arise for much higher memory pa-

rameters (for m = 0.75, for instance, the model’s inner steady state is abruptly

accompanied by a high-amplitude period-three cycle). In the bottom right panel

of Figure 10, the firms’ outside option, guaranteeing constant exogenous profits,

is endogenized by another market. For simplicity, we assume that markets are

symmetric. As it turns out, this model remains one-dimensional, has one less

parameter and, since profits in both markets can become negative, depends on

two (symmetric) kinks.11 For F = 0.18 and τ = 0.5, we recover our standard

bifurcation structure.

5. Conclusions

There may be many reasons for introducing nonlinear profit taxes. For in-

stance, our stylized behavioral market entry model predicts that higher profit

tax rates may be beneficial for market stability. The main reason for this out-

come is that higher profit tax rates reduce fitness differentials between firms’

strategies and, consequently, slow down their market entry and exit behavior.

10Schmitt and Westerhoff (2015) find that a piecewise-linear profit tax may also trigger

abrupt changes in the dynamics and multistability within the original cobweb model of Brock

and Hommes (1997). However, that model setup precludes a deeper and clear-cut analysis of

the phenomena discussed in this paper.
11In the future, we plan to explore such a two-market model in more detail. For instance,

an interesting question is whether policy-makers are able to stabilize asymmetric markets by

imposing market-specific tax rates.
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With less drastic changes in aggregate supply, the market displays less extreme

price fluctuations. However, our analysis also reveals that a piecewise-linear

profit tax creates a kink in the firms’ profit function which, in turn, causes a

kink in the dynamical system of the market. The effects of such a tax-induced

kink may be troublesome:

• First of all, we find that abrupt changes in the dynamics of a market may

emerge when a low-amplitude period-two cycle turns into a high-amplitude

period-two cycle via a slight change in a model parameter (border-collision

bifurcation). Abrupt changes in the dynamics of a market may also emerge

when a high-amplitude period-two cycle turns into a steady state via a

slight change in a model parameter (saddle-node bifurcation of a period-

two cycle). Of course, both bifurcation scenarios imply a dramatic shift

in the dynamic behavior of the market. In particular, the border-collision

bifurcation gives rise to a spontaneous jump in the volatility of market

prices and exchanged quantities.

• Between these two bifurcation phenomena, there may be a robust pa-

rameter range in which a locally stable steady state or a low-amplitude

period-two cycle coexist with a high-amplitude period-two cycle. If such

an environment is subject to noise, the combination of exogenous shocks,

transient dynamics and attractor switching may lead to very intricate dy-

namics and occasional volatility outbursts. This observation may also help

us to explain the complex behavior of many markets. In reality, volatile

markets are typically regarded as harmful.

• The bifurcation structure of the model may furthermore give rise to hys-

teresis effects. Suppose, for instance, that the market’s dynamics is char-

acterized by a low-amplitude period-two cycle that coexists with a high-

amplitude period-two cycle. A reduction in the profit tax rate may de-

stroy the low-amplitude period-two cycle and push the dynamics to a

high-amplitude period-two cycle. Unfortunately, a return to the previous

43



profit tax rate may not suffice to drive the dynamics back to the low-

amplitude period-two cycle since the system may remain in the basin of

attraction of the coexisting high-amplitude period-two cycle. A tempo-

rary increase to a higher profit tax rate may then be needed to guide the

dynamics back towards the low-amplitude period-two cycle.

• Such hysteresis effects may also be relevant for policy-makers’ tax rev-

enues. Even very small changes in the profit tax rate may cause substan-

tial jumps in tax revenues, leading to either much higher or much lower

tax revenues. Due to the coexistence of attractors, a return to the previous

profit tax rate does not necessarily mean that the previous tax revenue can

be realized again. Of course, a high-amplitude period-two cycle implies -

at least in contrast to a steady state or a low-amplitude period-two cycle -

that policy-makers’ tax revenues are also subject to stronger fluctuations.

These effects are quite robust and can, among others, also be observed in a model

with an isoelastic demand function, naive expectations, memory in the firms’

fitness function or an endogenous outside market. Note that these alternative

model building blocks do not only change the functional form of the model’s

dynamical system, but also its dimension. Put differently, our results do not

hinge on the assumption that the dynamics of our model is driven by a one-

dimensional map.

Although we have already extended our model in various directions, more

could be done in the future. In our current setup, policy-makers’ tax revenues

do not re-enter the economy. One could assume that a certain proportion of the

tax revenue goes to firms, lowering their effective fixed costs, and to consumers,

increasing their total demand. It would also be interesting to turn our partial

equilibrium model into a general equilibrium model and to study how piecewise-

linear tax measures, producing the peculiar bifurcation structure discussed in

this paper, affect the welfare of firms and consumers.

Since we are unaware of any empirical evidence that can be used to test

the predictions of our model, it would be interesting to test our model in a
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laboratory setting. Do piecewise-linear profit taxes have a stabilizing effect?

Does a piecewise-linear profit tax give rise to multistability? In this respect, it is

worth mentioning that Agliari et al. (2005) are able to explain the experimental

evidence of Hommes et al. (2005) according to which the same asset-pricing

experiments can lead either to fixed point dynamics or to strong oscillatory

motion. Agliari et al. (2015) explain this fact in their nonlinear asset-pricing

model via the coexistence of attractors. Depending on initial conditions, the

dynamics may settle on a calm or turbulent attractor. Clearly, path dependence

is also an issue in our model.

To sum up, policy-makers can stabilize the dynamics of our model by impos-

ing profit taxes. As long as the stability-ensuring profit tax rate is rather low,

an increase in the tax rate can lead to a smooth stabilization of the dynamics.

However, when the stability-ensuring tax rate is sufficiently high, an increase

in the tax rate may cause a number of unintended phenomena. An important

take-away message of our paper is that a piecewise-linear profit tax causes a

kink in the firms’ profit function (and thus in the dynamical system of the mar-

ket) and that this kink may cause a substantial change in the firms’ behavior.

We believe that this observation is not only relevant in our model, but may also

have serious consequences for many other market environments in which agents

face such a type of regulation and base their behavior on past profits.
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