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Abstract. This paper presents some results towards a game-theoretic
account of the constructive semantics of step responses for synchronous
languages, providing a coherent semantic framework encompassing both
non-deterministic Statecharts (as per Pnueli & Shalev) and determin-
istic Esterel (Berry). In particular, it is shown that Esterel arises from
a finiteness condition on strategies whereas Statecharts permits infinite
games. Beyond giving a novel and unifying account of these concrete lan-
guages the paper sketches a general theory for obtaining different notions
of constructive responses in terms of winning conditions for finite and
infinite games and their characterisation as maximal post-fixed points of
functions in directed complete semi-lattices of intensional truth—values.
Proofs can be found in a technical report [6].

1 Introduction

The classical theory of games, originally developed in descriptive set theory
and long used in economics and engineering control theory, has emerged as a
surprisingly versatile mathematical tool also in Logic and Computer Science.
The power of the game metaphor rests on its ability to handle combinatori-
ally complex situations, specifically the alternation of quantifiers, in a natural
and intuitive fashion [20,30]. The intensionality of the game model opens up a
promisingly wide playground for reconciling the algebraic and operational views
in the semantics of proofs and programming languages [1]. The game—theoretic
solution of the full-abstraction problem for the functional language PCF [3, 23],
the game—theoretic analysis of proofs in multiplicative linear logic [2,22, 8,4, 16]
are the most prominent cases in point. In this paper we would like to draw at-
tention to an important aspect of games that deserves to be highlighted more
explicitly than it is perhaps currently done. What could become the starting
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point for many further applications is that games provide a powerful and intu-
itively rather appealing setting for studying non-monotonic problems with co-
and contravariant logical dependencies. Such problems abound in Computer Sci-
ence. Many of these arise from the need to handle open systems and maintain a
compositional system-environment distinction.

Game theory handles cyclic systems of non-monotonic behaviours by cap-
turing the system and environment dichotomy through the binary polarity of
player and opponent, so that the swapping of roles gives constructive (inten-
sional) meaning to negation. In this paper we demonstrate the versality of this
idea for the semantics of step responses in synchronous programming. We de-
scribe the reaction of a composite system to stimuli from its environment as
a game played by the individual sub-systems in which these negotiate between
themselves the final outcome. This negotiation is governed by game rules deter-
mining particular notions of constructive response. We show how different forms
of winning conditions can generate different response semantics with varying
degrees of constructiveness. The games we are using are non-classical in the
sense that they are not necessarily determined, i.e. there need not exist winning
strategies for either player. This models the non-constructiveness of a system
response. Our strategies, unlike those used in type theory, do not have com-
putational meaning (“proofs”, “program”) themselves. They are extensional in
that they generate constructive truth-values for the interpretation of signals.
Our work differs from related work of de Alfaro and Henzinger [12,13] where the
game board (interface automata) represents explicit synchronisation dynamics.
In our case of synchronous step responses we are interested only in the station-
ary behaviour. The execution sequences and interleavings on the game board
(mazes) are abstracted away.

2 Synchronous Programming and Step Responses

Let us begin by discussing the central issues arising from the Synchrony Hypoth-
esis. For a more general introduction the reader is referred to [18,10].

In the synchronous model system execution is thought to be scheduled under
the regime of an implicit global clock which marks off a succession of individual
reaction instants. In every instant each component delivers a full response to
the external stimuli imposed by the environment. According to the Synchrony
Hypothesis all the internal signal exchanges needed to produce this reaction are
abstracted from in the sense that both the input stimulus and the response are
assumed to occur “at the same instant.” This reflects the point of view of an ex-
ternal environment which is always significantly slower than the system it feeds.
This compactification is the beauty of the synchronous model and makes up
much of its algebraic appeal. It adopts the macro-step viewpoint of the environ-
ment specified in terms of plain propositional logic and truth values to record
only the overall presence or absence of a signal at the respective instant.

To be definite let us fix a concrete system model. Let us assume that compo-
nents communicate via signals S = {a, b, c,...} each of which can be present or
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absent for a given reactive instant. A component is built up from individual tran-
sitions that emit signals in reaction to certain triggering conditions becoming
satisfied. A transition t of the form

Cl,Cz,...,Cm,ﬁbl,—lbz,...,ﬁbn/al,GQ,...,ak

is triggered by the presence of some signals pos(t) = {c1,...,cm} C S called
positive preconditions of t and the absence of signals neg(t) = {b1,b2,...,b,} CS
called negative preconditions. The result of its execution is that the action signals
act(t) = {a1,as,...,ar} C S are emitted, so that they can be picked up by other
transitions to trigger further computations. A reactive component is a structure
C = (T, act, trig) where T is the set of transitions and trig : 25 — 27 a triggering
function. For each subset 2 C S the function trig picks out the set of transitions
trig(E) C T that are triggered by E, assuming all ¢ € E are present and all
b € S\ E are absent. If t € trig(E) we say t is enabled by E. Because of
the negative trigger conditions the function ¢rig is non-monotonic, in general.
Increasing the set of signals Fy C E, may both increase or decrease the number
of transitions that are enabled.

We are interested in the overall response of a component C' in reaction to
an initial environment input Ey and determined as the combined effort of all
the transitions in C. This so-called step response is to be consistent with the
abstract model of a transition as an implication

(C1/\Cz/\"'/\Cm/\_'bl/\_'bQ/\"'/\"bn)D(Cll/\az/\"'/\ak),

specifying the reaction as “if all the ¢; are present and all b; absent, then all of
the a; are emitted and thus are present, too”. Parallel composition of transitions
would naturally be logical conjunction ¢; A t;. This propositional reading is
appealing but what sort of logic do we get? The simple answer is: It depends.
It depends on the properties of the intended operational behaviour that the
synchronous abstraction is supposed to model, in particular on how precisely the
transitions are scheduled and how the interaction between them is synchronised.

Let us see how one would determine the system response of C' operationally
for a single reactive instant under a given initial environment stimulus £ C S.
All transitions in T are assumed to act concurrently with each other. The input
E, thus, is sensed by all transitions simultaneously but only those in trig(E) are
enabled. Taking the role of a global scheduler we would now select some of these
transitions, say Ty C trig(E), and execute them in parallel. How we determine Ty
will depend on the operational semantics we have in mind. The two extreme cases
are executing only one transition at a time (|71 = 1) and executing all enabled
transitions together in one go (77 = trig(E)). Firing T} emits the action signals
act(T1) = U, act(t). These can now trigger further transitions, relative to the
extended signal set F; = E U act(Ty). Again we schedule a subset T C trig(E;)
of transitions enabled by Ej, and so on. In this way a chain reaction of transition
firings T; 41 C trig(E;) and cumulated signal emissions E;y; = E; U act(T;) may
ensue. We continue this process ensuring mazimal progress for all system parts.
When the activation sequence finally stabilises, i.e. act(trig(E,)) = E,, the
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reactive instant is completed and the step response or macro step of C' is the
final accumulated signal set E,,. For contrast, the individual scheduling stages
are sometimes called micro steps.

Within this generic model, which is typical for synchronous declarative lan-
guages many variations of scheduling strategies are possible. The crucial point
here is how to deal with the potential inconsistencies introduced by the in-
hibitive effects of negative triggers. Consider the following situation: A transi-
tion t; = —b/a € trig(E;) is enabled by the absence of signal b from E;, i.e.,
because of b € E;. Transition ¢; is fired and included into T;. This produces ac-
tion a € F;;1 which sets off further transitions in subsequent T; 1, Tj42, ... and
eventually, because of that, signal b is produced, say b € act(t,) where t,, € T),.
Clearly, this is inconsistent with the firing of ¢; in the first place which was done
under the condition that b is absent. There is not a single canonical way to han-
dle this. Likely, the full range of possibilities have not been explored yet, but
already there is a profusion of different solutions adopted in the literature on
synchronous languages [21,31,24,28,19, 33,27, 10]. For more details, see [6].

Our claim is that the variety of semantics arising from the different op-
tions of handling negation can be described naturally and uniformly using the
game-theoretic metaphor. Given the long-standing and sometimes heated debate
about the “right” step semantics for synchronous programming it appears to be
more than appropriate to search for a convincing unifying setting in which the
different dialects can coexist, each having its own characteristic place and appli-
cation. We present a natural hierarchy of three increasing levels of constructive
strength in the interpretation of negation, covering both Pnueli & Shalev’s ver-
sion of Statecharts and Berry’s Esterel. As the work is still tentative we do not
claim to achieve more than outlining this programme here. The guiding idea is to
try and characterise the different scheduling disciplines as instances of the ideal
propositional view promised by the Synchrony Hypothesis according to which
transitions are logical implications and parallel composition is logical conjunc-
tion. It is not difficult to see that this requires more than classical two-valued
logic (true = presence, false = absence). Take the four transitions ¢; := —b D a,
ta :=b D a, tg := true D a, t4 := a D b. In classical logic the conjunction ¢; A ta
is equivalent to t3, so we would expect ¢; A t2 to be interchangeable with ¢3. In
particular C; := t; A ta A t4 should be equivalent to Cs := t3 A t4 and thus rep-
resent the same operational behaviour. Now consider the operational semantics
of [31] and run C} in the empty environment E = ): Signal b is absent in E, so
transition ¢; fires. This sets off action a, triggering ¢4, which produces signal b.
This is inconsistent as b was assumed absent when t; was fired. Hence, following
[31], we try to find another schedule that is safe. But there is none, so program
C} fails, meaning it does not have a response in the empty environment. On the
other hand, C> happily terminates producing response b in all circumstances.
So, C and Cs are different, operationally.

It is not surprising that classical logic is not fine enough to model all the
intensional aspects of scheduling under inhibiting as well as enabling effects. As
seen above the single truth-value false cannot adequately model the meaning of
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negation —b when b is initially absent but occurring later. What is surprising is
that for certain coherent scheduling regimes it is possible to maintain the abstract
propositional viewpoint, i.e. avoid the complications of modelling scheduling
sequences in detail, simply by choosing a constructive logic interpretation. For
instance, in [26] it was shown that the simple twist of replacing the classical
two-valued by an intuitionistic interpretation of signals (specifically, 3-valued
Godel logic) suffices to obtain a fully abstract and compositional model for the
original macro-step semantics of Statecharts as given by Pnueli and Shalev [31].
Another example in this direction is [5] which explains the constructive semantics
of Esterel naturally in terms of winning strategies in finite 2-player games. The
present paper extends and systematises this work to show how non-classical
truth values induced by logic games can be used to characterise different kinds
of constructive single-step semantics for Statecharts-like languages.

3 Synchronous Reactions and Two—Player Symmetric
Maze Games

How to Play. A reactive component C' can be modelled as a maze M consisting
of rooms and directed corridors between them. Every signal in S corresponds to
a room in M and the corridors represent the causal relations between signals
as given by the transitions. When one is in a room a and there is a corridor
a — b, then it is possible to move into room b. In other words, the corridor
a — b denotes, according to C, that the status (present or absent) of a can be
justified (computed) in terms of the status of b.

In the symmetric two-player game employed here, this maze is the board and
the game figure is a token which is moved from room to room by the players
taking turns according to certain rules. In general, the objective of the game is
that of defending a set of rooms (region) according to a given winning condition.
Thus, this game produces a pair of regions P C S and O C S one for each player.
These two sets together constitute a possible response of C' under a particular
constructive semantics such that P and O will contain signals that are present
and absent, respectively, when C' is executed following the chosen operational
model. The two players P = {4, B} are the system and the environment denoted
respectively by A and B, where A plays for region P and B for region O. Hence,
in all plays from P player A starts while in O his opponent B is the first to play.
We will say A defends the front-line (P,O) if A has a winning strategy for all
plays from P or O. The rules are given by two types of valid moves that we shall
call visible moves and secret moves, respectively. In our games, we represent this
statically in the maze by two types of corridors, visible and secret. Every time
that the token is moved through a visible corridor the control is passed to the
opponent and if the token is moved through a secret corridor the turn remains
unchanged. In the same vein, it will be useful to distinguish between visible rooms
and secret rooms. Visible rooms, like visible corridors, are atomic communication
points between system and environment where information is exchanged, while
secret rooms represent intermediate or auxiliary positions where no interaction
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takes place. This models the difference between atomic signals a, b (visible rooms)
and composite formulas such as a A —b, a V —b (secret rooms). This distinction
will be relevant for certain cases of winning conditions.

Reactive Components as a Mazes. Since in our game P will correspond to the
set of present signals and O to the set of absent signals the causality expressed
in the transitions 7' of C' can be represented in the maze M as follows.

For any a € act(t), transition t € T
is expressing the fact that a is caused
to be in P if for all ¢ € pos(t), c is L
in P and for all b € neg(t), b is in O.

This conjunction can be modelled in
the maze by means of introducing an
intermediate (secret) room, say y, and

DN

v :
— a7 :

by adding a visible corridor between : LN :

each a € act(t) and y, a visible corri- : / \\\@ Y

\\\T \\\

\ AN

dor between y and each ¢ € pos(t) and .
a secret corridor between y and each o
b € neg(t) as seen in Fig. 1, where
visible rooms/corridors are marked & X ~
and drawn with solid lines while se- N :
cret rooms/corridors are drawn with v
dashed lines and marked 7. A transi- :

tion like ¢/a with only one trigger and »7 --
action can be coded without the in-
termediate room as a secret corridor | €1,...,Cm,b1,...,"bp/a1,. .., ak
from a to ¢ and a transition —b/a sim-
ply as a visible corridor from a to b.
This short-hand will be sound for all Fig. 1. Example transition.
semantics considered in this paper.

Note that any environment stimulus can be accounted for as part of a reac-
tive component. The situation where the environment provides z and z to C can
be expressed as the parallel composition C' | (-/z, z), where -/, z is a transition
with an empty precondition which produces signals z and z as required by the
environment. A transition ¢ with an empty precondition is reflected in the cor-
responding maze as a visible corridor from all a € act(t) to a dungeon, i.e., a
room without exits.

Game Rules. We now informally present different alternative ways of playing
the game. Let us use the maze of Figure 2 assuming that x is the only signal
that can be used as stimulus by the environment. For the sake of convenience,
in what follows whenever z is present we will avoid drawing a visible corridor to
a dungeon from this room and instead simply assume that x is in P.

The synchronous reactive model requires constructive responses, meaning
responses that are supported by some sort of justification which should come
from the program. A natural way of obtaining various forms of constructive
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arguments, would be to assume that at startup and in some pre-established order
the players choose a finite amount (discrete quantity) of a particular resource
that we may call seeds. During the game, and depending on the rules, a player has
to pay with seeds for taking some action (e.g. visiting a room for the first time,
using a corridor, taking his turn, etc.). A player wins if he can make his opponent
get stuck, i.e., force him to play in a dungeon or make him run out of seeds. Note
that this metaphor is not only useful for introducing constructive arguments, but
also can reflect the underlying resources and features of the physical system (e.g.
energy to maintain a signal, time, memory and so on) that the model abstracted
from. The notion of seed is an intensional parameter that can be used to explain
extensional but infinite winning conditions in terms of finite processes. In general,
different intensional rules, involving seeds as suggested above, may give rise to
the same extensional model.

In the coherent maze game, player B (the opponent) is the first to pick up
his supply of seeds whereupon player A does the same with the advantage of
knowing the resources of his opponent. In this game, both players are required
to pay one (unit of) seed every time the token enters a visible room. Under
these conditions A can win provided he can keep the play going for an arbitrary
number of moves through visible rooms. One possible solution for Fig. 2 is given
by (P,0) = ({y,r},{z,s}). If the initial position of the token is r then evidently
player A can use the secret corridor that forms a self-loop in this room repeatedly
without ever getting stuck. If the initial position is y player A can move the token
to room s and pass the turn to B. From this position, player B will either move
to r and give A the chance to take over forever, or he can place the token back
to y restarting the whole process. In any case, since the number of seeds on both
sides is finite the play must eventually finish. Moreover, because A had chosen
his number of seeds after B he will have more seeds available than B (assuming
A is sensible enough), and so when this process ends it has to be because B runs
out of seeds. Similarly, one argues that if B starts in any of the rooms O = {z, s}
player A can win by making B run out of seeds or get stuck.

In the lazy maze game, the rules are as be-
fore except now only the player who actually
gets to occupy (receives the turn in) a visible
room must pay. Hence, a coherent solution
like the one before (P,0) = ({y,r},{z,s}) is
no longer acceptable, because although A can
have as many seeds as he wants this number
is finite. So if he decides to go in circles from
room 7 to room r he will eventually get stuck
there without B having lost a single seed. To
win, player A must be able to hand over the
turn to B arbitrarily often in a visible room.
It is not hard to see that a solution for this
game is given by (P,0) = ({y, 5}, {z,7,2}).
Starting in P player A can move to x or r

Fig. 2. Example maze.
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where opponent B will be stuck (in z) or cycle indefinitely (in r). Similarly,
if B plays from O he will cycle or finish in a dungeon without having chal-
lenged A at all. Assuming that the presence of signal z is enforced by the en-
vironment we have in fact two solutions (P,0) = ({z,y,r},{z,s}) and also
(P,O) = ({z,r,s},{z,y}), which illustrates the inherent non-determinism in
this type of game.

In the eager maze game everything is as in the previous case but now the
order in which the players choose their seeds is inverted, first A chooses and
then B. Now loops like the one formed between y and s when z,7 € P can no
longer be supported by the fact that A has more seeds than B in such a way
that depending on the starting position either y € P,s € O or s € P,y € O is
defended by A. It is B who has the advantage of having more seeds, so basically
A needs to solve the game by avoiding circular confrontations and instead try
to push B into a dungeon as soon as possible. In our board the solution for this
is given by (P,0) = ({y}, {z, 2}) which can easily be verified. This game type
ensures determinism.

Charts and Mazes. Formally, a maze is a finite labelled transition system M =
(S.,S;, ==, —), consisting of finite and disjoint sets of visible rooms S, and
secret rooms S, together with transition relations —+C S x S, where v € {1, 7}
is a secret or observable action and S = S, US, the set of all rooms. The
transitions represent valid moves (corridors) between rooms. A transition s —s
s' corresponds to a visible corridor connecting s with s’ and s — s’ to a
secret corridor. For technical convenience we assume that rooms without exiting
corridors (dungeons) are visible. In this way it is always observable when a player
gets stuck. Moreover, we assume that no pair of secret rooms is connected by
a secret corridor, which ensures that each move involves at least one visible
interaction. We denote the opponent of player U by U. More generally, for v €
{t,7} and U € P = {A, B} we define U” € P to be the unique U’ such that
U = U'iff vy = 7. We will assume throughout that M is a fixed, finitely branching,
maze.

Configurations and Plays. A (game) configuration is a pair ¢ = (pos(c), turn(c)) €
S x P. The first part pos(c) is a position in M and turn(c) denotes the player
who has the turn at this point. A play is a (possibly empty) finite or infinite
sequence of configurations

7 = (mo,to) - (m1,t1) - (M2, t2) - -

consistent with the game rules, i.e., each step follows some corridor in M and the
player’s turn changes exactly if this corridor is visible. Formally, for all (m;, ;)
that have a successor (mi41,ti11) in 7 we must have m; — mgyq if t; = tipq
or m; — miy1 if t; # tiy1. The domain dom(w) € w + 1 of a game path is
the set of indices, i.e. dom(w) = w if the path is infinite and dom(w) € w if it
is finite. In handling such indices it is expedient to consider the domain as an
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ordinal number. Specifically, w = {0,1,2,...} and each natural number n € w
is identified with the set of its predecessors, i.e., n = {0,1,2,...,n — 1}. We
can then present a path as a function 7 : dom(w) — S x P. The empty play is
denoted e. From now on, let IT denote the set of plays in M. We write C for the
prefiz ordering on IT, i.e., m; C 7o if there exists a play o such that o = 71 - 0.
A play 7y is a suffiz of another play 75 if 75 = o - 7y for some finite play o.

4 Strategies and Defensible Front-Lines

As usual a strategy for a player U is a subset of plays in which U’s moves are
uniquely determined at each stage of a play where he holds the turn, while
keeping unconstrained the decisions of his opponent. A strategy for U, or U-
strategy, is a non-empty C-closed subset X' C IT of plays that is continuous,
U-deterministic and U-closed. Specifically, X is

— continuous, if m ¢ X implies there is a finite prefix 7' C 7 with 7’ ¢ X;

— U-deterministic, if - (m,U) - (m;,U;) - 0; € X for i = 1,2, then my = my
and U1 = UQ;

— U-closed, if - (m,U) - 0 € X then for all corridors m —= m/ in the maze
there is an extension 7 - (m,U) - (m',U) -0’ € X.

Two features of U-strategies are noteworthy. Firstly, they are partial, i.e. player
U is not forced to make a move. He may decide to stop the play for good, even
if there is an outgoing corridor. Secondly, a strategy in general has many initial
configurations generating several independent threads of plays from different
initial positions with different starting players.

Throughout the paper we will fix U = A and simply talk about a strategy
when we mean A-strategy. Also, we will be interested only in consistent and
positional strategies. A strategy is consistent if no position is occupied by more
than one player, i.e., m; - (m,U;) - 0; € X for i = 1,2 and fixed m € S implies
U, = Us. A strategy is positional if a player’s every move only depends on the
current position, not on the history of the play. Formally, 7 - (m,A) -0 € X
iff (m,A) -0 € X. By default all strategies are assumed to be positional and
consistent A-strategies.

Let us look at some consequences of consistency. For an A-strategy X' let
Py and Oyx be the sets of positions in X in which player A and B receive the
turn, respectively. Formally, Py := {m | 3m,0.7 - (m, A) - 0 € ¥} and dually
Os :={m | 3Im,0.7-(m, B)-0 € X}. Consistency of strategies, then, is equivalent
to the condition Ps N Ox = §. We call pairs (P, O) of regions with the property
that PNO = ( front-lines and (Px, Ox) the front-line defended by strategy . A
front-line (P, 0) where P is the complement of O is called binary or two-valued.

We will be interested in maximal front-lines that are defensible using partic-
ular types of strategies and characterise them in terms of post-fixed points. To
understand the connection it is useful to view the maze M as a Kripke transition
structure in labels v € {¢,7} in which regions may be specified using formulas of
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propositional modal p-calculus. We assume the reader is familiar with this lan-
guage and its semantics (see e.g. [35,17]). In this language we have the standard
modalities (7), [y] each of which is of type 25 — 2% on sets of rooms, defined in
the usual way:

(YWR) :={m|3Im' € R.m L m'}
Y(R) := {m |¥m' € R.m - m'},

for arbitrary R C S. The logical connectives V, A correspond to union and
intersection on 25, respectively, and — is complementation, i.e., RV S := RU S,
RAS:=RnNS, =R := 25\ R. Further, there are least fixed point uX.¢ and
greatest fixed point operators v X.¢ with the usual interpretation assuming that
the formula scheme ¢ is monotonic in the recursion variable X.

Let us observe that defending a front-line with an arbitrary strategy does not
require much cleverness, since as long as from O there is no secret corridor into
P and no visible corridor into O the trivial “empty” strategy will do, in which
A does not make any move at all. The following Proposition 1 characterises
defensible front-lines, without reference to strategies:

Proposition 1. Let (P,0) be a front-line. Then (P,0) is defensible iff O C
[T]O A []P. Further, (P,0) is mazimal defensible iff additionally P = -0.

Using Proposition 1 it is possible to make a connection between maximal
defensible front-lines and classical logic. Read each visible corridor a — b as
the logical implication =b O a and each secret corridor a — b as b D a. In this
manner a finite maze M corresponds to a formula ¢ s given by the conjunction of
all its corridor implications. Taking the classical truth-value interpretation and
identifying binary valuations V' : S — B with subsets V' C S we find that (P, —P)
is a maximal defensible front-line iff P as a binary truth valuation (P(z) =1 iff
x € P) satisfies ¢pr. In other words,

Proposition 2. The mazimal defensible front-lines (without further conditions
on strategies) coincide with the classical binary truth-value models of ¢ur.

Thus, the notion of defensibility just coincides with classical logic, the weakest
notion of synchronous response. In the next Sec. 5 we shall study specific winning
conditions making the defence of front-lines constructive. Depending on which
winning conditions we consider we will get different types of games on the same
maze, implementing different degrees of causal justification.

Before we study winning conditions a couple of general observations are in
order on the algebraic nature of our problem. Let FLy; be the set of front-lines
of M, i.e., the set of (P,0) C (25)? such that PNO = (. Then, first observe that
(P,0) € FLy; iff (P,0) is a post-fixed point (pfp) of the “De-Morgan” function
dm : (25)2 — (25)2 defined as dm(X,Y) := (=Y, —X), which interchanges the
role of the players and complements their set of positions. From Prop. 1 we gather
that defensible front-lines can be described as the pfps of dfl-M : FLy; — FLyy,
where

dfl-M(X,Y) = (X V()X V ()Y, Y A[T]Y A [ X),
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taken as a function on FLjs. It is easy to verify that dfl-M indeed preserves front-
lines, i.e. if (P,0) C dm(P,0) then dfl-M(P,0) C dm(dfl-M(P,0)). Having
pfps the next question is what are the greatest fixed points? If f is a monotone
function on a lattice then the greatest fixed point of f is the supremum of all
pfps. However, for functions such as dm and dfl-M this does not work, in the
former case since dm is not monotone and in the latter since FL,; is not a lattice.
The sub-domain FLj; of front-lines is not completely without structure, though.
It is easy to see that FLj, is a directed complete semi-lattice. By Zorn’s Lemma,
such domains have maximal elements. So, we may not have unique greatest pfps
but we can try and identify the mazimal pfps instead.

5 Winning Conditions

A winning condition, for our purposes, is a property of (maximal) plays that is
time invariant, i.e., invariant under shifting of the initial position. A rich source
for winning conditions is provided by the different acceptance conditions for
w-regular languages over the alphabet of configurations. All usual acceptance
criteria for infinite paths such as the Muller, Rabin, Streett, Parity, Biichi con-
ditions (see [36,17] for a comprehensive introduction) are time invariant, simply
because they all are based on the set of configurations that occur infinitely of-
ten in a play. Obviously, this set does not change under shift of initial position.
We shall only consider some special cases, here, related to the two well-known
synchronous languages, Esterel and Statecharts. A more comprehensive study is
left to future work.

Definition 1. Let w be a play and U a player. We say that w is

— U-live if U always enables another visible move, i.e., for all i € dom(rw) such
that turn(w(i)) = U there exists i < j < dom(r) such that pos(n(j)) € S,.

— U-reactive if U always eventually hands over to U in a wvisible room. For-
mally, for all i € dom(w) if turn(w(i)) = U then there exists i < j < dom(mw)
such that pos(m(j)) € S, and turn(r(j)) = U.

— U-terminating if all observable actions eventually stop and U is the last
player, i.e., there exists i < dom(m) such that turn(r(i)) = U and for all
i < j < dom(w), we have pos(w(j)) € S; and turn(n(j)) = U.

The conditions of Def. 1 reflect! the different intensional ways — discussed
in Sec. 3 — of using seeds as additional (finite) resources. One can easily see
that these conditions are general winning conditions according to the above
definition, i.e., that they are time-invariant. On finite plays all three notions
agree, i.e. if dom(w) < w then 7 is U-live iff it is U-reactive iff it is U-terminating.
They simply state that player U is the last to hold the execution token and

! This intensional interpretion of the winning conditions depends on the restiction
that dungeons are always visible and secret rooms cannot be connected by secret
corridors, which may be dropped by adjusting the rules for paying seeds.
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thus responsible of “stopping” the computation. On infinite plays reactiveness
is a proper strengthening of liveness, and termination a proper strengthening of
reactiveness. A play may be U-live but not U-reactive, e.g., if player U keeps
going forward indefinitely along secret corridors between visible rooms without
ever again passing the turn to his opponent. This corresponds to “divergence”
on the side of U. A play may be U-reactive but not U-terminating, e.g., if U
infinitely passes the turn to his opponent (in visible rooms) who keeps challenging
him over and over again without the play ever stopping. An U-terminating play
must eventually leave the onus on the side of U forever.

As done in [7] we will discuss only a special case of the above winning condi-
tions, namely when the maze does not have any secret rooms. So, unless specified
otherwise, S = S,. This will suffice to convey the basic ideas. The general case
can be developed without difficulties by refinement from the simplified setting.
To assume that all rooms are visible essentially amounts to the special case of
synchronous programs in which all transitions have single triggers and actions,
i.e. are of the form b/a or —b/a. As indicated before, these can be represented
directly by secret or visible corridors, respectively, connecting the visible rooms
a and b. As far as terminating and live winning strategies are concerned this is
without loss of generality as all transitions can be broken down into these special
cases: E.g., one can show that ¢, ~b/a,d has the same semantics as the set of
transitions —¢/z, b/z, -~z /a, ~x/d together. This does not hold for reactiveness,
though, as we will indicate later. Under the assumption S =S,, or S, = ), the
winning conditions specialise as follows ([7]): A play 7 is

— U-live if U always makes another move when he gets the turn, i.e., for all
i € dom(w) if turn(7w(é)) = U then ¢ + 1 € dom(7)

— U-reactive if U always eventually hands over to U. Formally, for all i <
dom(7) there exists i < j < dom(w) with turn(w(j)) = U

— U-terminating if it is finite and U is the last player, i.e., dom(7) < w and

turn(m(dom(rw) — 1)) = U.

Given a winning condition Win we say that a strategy X is a Win-strategy if
all prefix-maximal plays in X satisfy Win, and a front-line (P, O) is called Win-
defensible if there exists a Win-strategy X' that defends it, i.e. for which (P, 0) =
(Px, Ox).

5.1 Coherent Responses

The first constructive strengthening of strategies is A-liveness. In an A-live strat-
egy the player must make sure he is never blocked, i.e. he always makes a move
when he receives the turn. This means for every “present” signal in P the player
must be able to offer a justifying transition. Of course, like for ordinary defence
strategies, he must play consistently, i.e., always move from a (“safe”) P-position
in his territory while confining the opponent to region O and preventing him from
conquering any position in P. Let us say a front-line (P, O) is coherent if it is de-
fensible by an A-live strategy. In other words, a front-line is defended coherently
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if player A is consistent and can avoid ever getting trapped in a dungeon. Thus,
coherent front-lines admit infinite plays. Let CFLys C 25 x 25 be the collection
of all coherent front-lines. Like for general defensibility a simple characterisation
can be given that does not refer to strategies.

Proposition 3. A front-line (P,0) is coherent iff both O C [7]O A [l]P and
P C{(r)PV (1)O.

Using Prop. 3 one can show that for arbitrary P there exists O such that
(P, O) is a coherent front-line iff P C is_present(P) where is_present(X) := (1) XV
(y(@Y. (=X A[T]Y A[¢)X)). Dually, a set O can be extended to a coherent front-
line (P,0) iff O C is_absent(O) for is_absent(Y) := [7]Y A ] X.(-Y A ({(T)X V
(1}Y")). These characterisations describe the verification procedures to check that
particular signals are coherently present (absent) in the system response without
specifying the full expected response up front. It is important to point out that
the negations appearing in is_present and is_absent are crucial to make sure the
front-lines extracted are consistent. As a consequence of this the arguments
P and O, respectively, appear simultaneously co- and contravariantly in the
right-hand sides of both inequations P C is_present(P) and O C is_absent(O).
Therefore, we cannot hope to obtain unique maximal solutions.

Proposition 4. (P,0) is a mazimal coherent front-line iff it is a mazimal fized
point of cfl-M : FLyr — FLyr, where cfl-M (X,Y) == (() X V{)Y, [T]Y A[1]X).
Moreover, (P,—P) is coherent iff P = (7)P V {1)—P.

What do coherent front-lines mean for synchronous programming? Let us
look at Esterel. Considering a corridor z — y as a statement presenty thenz
and x — y as present y else z associates an Esterel program esterel(M) with our
maze M. A front-line (P,0) of M then corresponds to a potential response of
esterel(M) where all signals in P are considered present and all in O absent.
Now, (P, —P) is coherent if a signal is present x € P in the response iff there is
a statement in esterel(M) that emits it, i.e. there is presenty; thenx and y; € P
or presentyselsex and yo € —P; and a signal is absent z € —P exactly if all
statements that can emit x are switched off. Two-valued coherent responses have
been called logically coherent by Berry [9], hence our terminology. An Esterel
program is logically reactive (logically deterministic) if it has at least (at most)
one logically coherent and binary response.

What is constructive about coherence? Well, coherence is strongly related to
the notion of inertiality. If a transition, say ¢, ~a/b represents a response function
with inertial delay then it has the following extra property: If the input trigger
¢\ —a becomes satisfied and then false again before output b could be produced,
then the transition being “inertial” completely forgets its previous excitation.
Another way to put this is: if ¢ A —a holds during some non-empty interval
[s,t) C R of time and the output b indeed reacts while it is on, say at t, € [s, ),
then b must remain (at least) present strictly beyond ¢, i.e. during some interval
[ts,t + €), for € > 0. Inertiality is an important assumption in hardware design
[11] and the key to implementing memory.
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It is not difficult to verify, then, that a p—
component (represented in Fig. 3) such as

(¢,na/b) | (b,ma/c) | (=d,b,c/d) can ex- :

hibit a real-time waveform in which both § y \

b, c are constant true mutually supporting gg 5 / \'

each other by inertiality when a is absent. L

This corresponds to the coherent front-

line (Py,01) = ({b,c},{a,y, z}). Observe \ p

that (P1,0;1) can not be extended to a (z ) C

two-valued solution. For even with iner- :

tial delays signal d cannot be guaranteed

to stabilise when b,c are present. There

is, however, a coherent and two-valued .
. - Fig.3. Maze for component

solution (Ps,03) = ({z,y,2},{a,b,c,d}),

which also means our example is non- (c., ~a/b) | _(b’ ~a/c) | (=d,b,c/d)

deterministic. In contrast, the defensible with front-line (P, O1).

front-line (P, 02) = ({a,b, ¢, y, 2}, ) is not coherent since a, b, ¢ would have to

be maintained by the environment, which is not an autonomous and constructive

response.

5.2 Lazy Responses

Coherent strategies, though stronger than classical responses, still constitute a
weak notion of winning. A player can defend his positions simply by avoiding
ever to get stuck in a dungeon while maintaining consistency. This includes the
possibility that A cycles along an infinite path of secret corridors where he keeps
the turn forever. In this section we will strengthen the winning conditions so
as to eliminate such behaviour. We still permit infinite plays but require the
winning player to be reactive in the sense that he is never embarrassed about
a move when challenged and always generates a proper response (hands over to
opponent in a visible room) in finite time, though we do not insist he can stop the
opponent from ever challenging him again. We shall call these defence strategies
lazy and write LFLjs for the set of lazy defensible front-lines. For the example
of Fig. 3 we find that the coherent valuation (P;,01) = ({b,c}, {a,y,2}) is not
lazy and thus ruled out. To defend room b € Py, say, player A would indefinitely
send his opponent around the intermediate secret rooms y, z (corresponding to
the composite trigger conjunctions ¢A—a and bA—a) which violates reactiveness.
Ounly (Ps,03) = ({z,y, 2}, {a, b, c,d}) remains as a lazy front-line.

The term ’lazy’ is inspired by the computational intuition that in the game
the system player A produces a result to a request? from the environment player
B. In a lazy computation it suffices that the system respond to every request

% As in the standard type-theoretic setting we imagine environment B making the first
move with a choice of a secret corridor to any room in O or a visible corridor to any
of the P positions. Logically this is the conjunction of all P with the negation of all
O positions.
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from the environment in finite time, without necessarily being able to make the
environment stop all further requests. Notice again, the central feature of these
games is their use of infinite plays.

We will show how lazy front lines LFLy; are determined as the post-fixed
points of a suitable monotone function Ifl-M : FLp; — FLjs such that all pfps
of Ifl-M are pfps of cfl-M, which we abbreviate as Ifl-M < cfl-M. This implies
that LFLy; C CFLy, as expected, i.e., all lazy front lines are necessarily coherent.
Moreover, we show that lazy defence strategies are intimately related with Pnueli
& Shalev’s interpretation of Statecharts [31] in the sense that the maximal ele-
ments in LFLy; correspond to the step responses of M viewed as a Statechart.
For the following we assume that all rooms are visible. For arbitrary mazes both
Props. 5 and 6 need to be generalised slightly, by another least fixed point that
implements finite skipping over secret rooms.

Proposition 5. A front-line (P,0) is lazy iff P C uX.({(7)(PAX)V {1)O) and
O C[r]O Ay P.

Using the characterisation of Prop. 5 we can eliminate the negative part O
from the definition of lazy front-lines as before: A set P can be lazily defended
by the starting player, i.e. is part of a lazy front-line (P,O) for some O iff
P C puX.((T)(P AN X))V (1)O*) for the fixed (“loosest upper approximation”)
O* :==vY. =P A[7]Y A [¢]P. A similar statement can be made for the opponent
part: A set O can be defended by the second player, i.e. is part of a lazy front-
line (P,0) for some P iff O C [7]O A [t]P* for the fixed set P* := vY.(=O A
uX. {7y (Y A X)V (1)0)). Note again how these “one-sided” formulations bring
up the combined co- and contravariance inherent in our setting.

Prop. 5 states that (P, O) is a lazy front-line if it is a consistent pfp of the
set function Ifl-M : (25 x 25) — (25 x 25) defined as

-M(P,0) := (uX.((r)(P A X)V (1)O), [r]O A[]P).

Clearly, Ifl-M is monotone and Ifl-M < cfl-M, i.e., all pfps of Ifl-M are also pfps
of cfl-M. Also, Ifl-M preserves front-lines, too, whence it is a monotone function
on LFLy;. We may now rephrase Prop. 5, thus: A front-line is lazy iff it is a
pfp of Ifl-M : FLp; — FLps. The fact that fl-M < cfl-M then explains why
LFLys € CFLps. Again, from general results (see [6]) it follows that LFLs is
closed under directed union and preserved by the game function cfl.

Proposition 6. Let (P,0) be a front-line. Then, (P, 0) is mazimal lazy if it is
a mazimal fized point of Ifl-M . Specifically, (P,—P) is lazy iff P = pX.({(7)(P A
X)V (1)=P).

As before with coherence, a maximal lazy front-line (P, O) need neither be
uniquely defined nor two-valued. For the component (—¢/b) | (=b/¢) | (¢,ma,—b/a)
we find that there are two lazy responses (= maximal lazy front-lines) (P;,0;) =
({b},{a,c}) and (P2,03) = ({c},{b}). Of those only the former is two-valued.
In the latter signal a remains in untenable no-man’s-land. It cannot be defended
consistently neither as part of P> nor of Os.
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Note that in this example it does T
not matter if the intermediate room |- @
associated with the trigger conjunction \}D
¢ A —a A —b of transition ¢,—a,—b/a is
visible or secret. We obtain the same o
lazy front-lines. This is not in gen- ) @'
eral so. Consider the mazes M;, M, @\/@ /@)
and My, M} in Fig. 4 corresponding to o
components a/a and (—a/z) | (-z/a),
respectively, where M is a short-hand
for M, and M, a short-hand for M}. In Fig. 4. The role of secret rooms.
M, the room =z is secret which means
that ({z}, {a}) is the only non-trivial lazy front-line, while in M5 both ({z}, {a})
and ({a},{z}) are lazily defensible.

We can now state the connection between lazy front-lines and Pnueli & Shalev
Statecharts responses. We read each secret corridor £ — y as a transition y/x
and each visible corridor z — y as the transition 7/x of Statecharts and maze
M as the parallel composition statecharts(M) of all these transitions, which
may thought of as the flat and normalised encoding of a complex hierarchical
Statecharts automaton [25].

M, M representing a/a

M, M) representing (-a/z) | (-z/a)

Theorem 1. Let M be a finite maze and statecharts(M) the Statecharts program
associated with M. Then, P is a Pnueli & Shalev response of statecharts(M) iff
(P,—P) is a lazy front-line in M.

5.3 Eager Responses

Finally, we banish infinite plays and decree that player A must terminate his
response in a finite number of steps by pushing the (control, execution) token
back to the environment, which in turn must become satisfied and stop eventu-
ally. This is the winning condition of A-termination. We say a front-line (P, Q)
is eager if it is defensible by an A-terminating strategy. Let EFLjs be the set of
eager front-lines. Eager defence is a finite process: A front-line (P, 0) can only
be defended if player A manages to drive the opponent into a dungeon (which
by assumption is always visible). In this case all rooms in P are winning and
all rooms in O are losing positions. A room that is not contained in any eagerly
defensible front-line, and thus is neither a winning nor a losing position, is a
draw position. In the previous example (—¢/b) | (=b/¢) | (¢,ma,—b/a) none of the
two lazy responses (Pr,0:1) = ({b},{a,c}) and (P»,03) = ({c},{b}) is eager as
their defence involves infinite cycling between b and ¢. The only lazy front-line
it has is (0, 0), i.e, all rooms are draw positions. Eager front-lines seem to be the
strongest, most constructive notion of response so far considered in the literature
on synchronous languages. As it turns out eager defence strategies correspond
to the constructive semantics of Esterel [9]. An eagerly defensible (P,0) is a
(partial) constructive Esterel response. Draw positions are (non-constructive)
Esterel signals with undecided status.
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Theorem 2. The greatest eager front-line (Win, Lose) of a finite maze M coin-
cides with the constructive response of esterel(M), i.e., a signal a € S is present
in esterel( M) iff a € Win and a is absent in esterel(M) iff a € Lose. The program
esterel(M) is constructive in the sense of Esterel iff (Win, Lose) is two-valued.

There is also a fixed point characterisation of eager front-lines. It is known
from the theory of Esterel (see [9,5]) that (Win,Lose) can be obtained as the
(2-dimensional) least fixed point of cfl-M : FLys — FLyy, i.e., (Win,Lose) =
w(X,Y). cfl-M(X,Y), where cfl- M (X,Y) = ((1) X V()Y , [T]Y A[¢]X). Assuming
cfl-M is continuous (always for finite or finitely branching mazes, in particular
those generated from pure Esterel programs) this fixed point can be computed
in the standard fashion by iteration, viz. as |J, ., cfl-M*(0,0). The successive
approximations cfl-M#((,)) not only accumulate the front-line (Win, Lose) but
also construct an eager defence strategy for it, which essentially corresponds to
the Must/Can analysis of Esterel [9].

The following Proposition 7 identifies a monotone function efl-M : FLys —
FLas satisfying efl-M < Ifl-M (i.e., a strengthening of the lazy semantics) such
that eager front-lines coincide with the pfps of efl-M.

Proposition 7. A front-line (P,0) is eager iff it is a pfp of the function efl-M
defined as efl-M (P, 0) = u(X,Y).cfl-M(P A X,0 AY).

Thus, eager front-lines, too, are nothing but pfps of monotone functions on
front-lines, this time of

efl-M(P,0) := y(X,Y).cfl-M(P A X,0 AY).

Again, the maximal pfps coincide with the maximal fixed-points, but now these
are indeed the least fixed point of cfl-M. Although eager responses may not be
two-valued they are always deterministic.

6 Conclusions

In this paper we have identified four natural levels of semantics for synchronous
(instantaneous) response in a game—theoretic setting as defensible front-lines
according to increasing restrictions on winning conditions. The levels DFLys D
CFLas D LFLas D EFLjs correspond to classical, coherent, lazy, and eager valu-
ations, repectively. Each level is associated with a particular degree of compu-
tational constructiveness, DFLj; being the weakest and EFL,; the strongest, re-
flecting a characteristic operational interpretation of system execution. At DFL s
there is no constructiveness requirement, CFLj; is intimately linked with iner-
tiality, LFL ;s is Statecharts, and EFL; corresponds to Esterel. The game theory
gives a coherent interpretation for non-determinism and partiality of the non-
classical semantics. We have shown that these semantics can be obtained alge-
braically as (maximal) post-fixed points of a decreasing sequence of monotone
functions dfl-M > cfl-M > Ifl-M > efl-M on the directed complete partial order-
ing FLas C (25)2 of front lines. In this way the game semantics turns algebraic
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and induces suitable truth—values for presence and absence of signals at a given
level. The explicit presentation of these truth-values, however, is only known for
dfl-M, viz. classical Boolean logic, and for Ifl-AM where we get Godel’s 3-valued
intuitionism. The truth-value interpretation of cfl-M and efl-M is left open, in
particular it is not clear if these are finite-valued.

The levels of constructiveness characterised here using games and winning
conditions also play an important role in Normal Logic Programming (NLP),
which extends standard definite Horn clause programming by permitting neg-
ative literals in clause bodies and queries. Various types of models based on
three- and many-valued interpretations have been developed in the literature for
normal logic programs. We refer the reader to [34] for a survey of the classic
results.

There are two important methodological differences between logic program-
ming and synchronous languages: First, algebraic and logic models of NLP are
judged according to their ability to reconstruct a fixed (standard) operational
execution model, viz. negation as finite failure also known as SLDNF resolution.
Where a many-valued semantics does not fit SLDNF completely, one seeks to
identify restricted classes of programs for which they coincide. In synchronous
programming, in contrast, one is not dealing with just a single operational model
but with many of them, each accommodating different scheduling principles and
implementation platforms. Second, since synchronous programs typically model
embedded and reactive systems with some degree of (low-level) asynchrony it is
essential that non-determinism and concurrency is represented adequately. NLP,
on the other hand is based on a strong deterministic and sequential execution
model, which even constrains the order in which clauses and literals are executed.
In this sense the work presented here aims at a rather more general setting than
what is considered in NLP. In another sense, though, our scope is more restricted
here, viz., in considering only propositional programs. Current other work [29,
32], however, indicates that the game-theoretic point of view is useful also for
First-order Logic Programming. We believe that generating constructive models
of Horn clauses from different types of winning conditions may provide further
insights into the relationship between operational and denotational semantics of
Logic Programming. At the propositional level eager front-lines are related to
the 3-valued models of Fitting, lazy front-lines to the stable models and the sup-
ported models of NLP are the binary coherent front-lines (see [34] for definitions
of these types of models and references).

To appreciate the versality of the games model suppose, e.g., we wanted
to capture the standard sequential execution in literals a,b in a Prolog clause
c:—a,b such that the whole clause loops if a loops even if the second clause b
has a finite failure. Under a symmetric interpretation of conjunction (or parallel
models such as those considered in this paper) the clause would not hang up in
executing a but fail instead on the grounds that a conjunction is false if any of
the conjuncts is.
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We can model the asymmetric form of conjunction in terms of mazes as seen
in Fig. 5, say under the eager® winning condition: Suppose that a is undefined,
i.e. it cannot be won by the starting nor by the second player. Then, as we check
easily, room ¢ is undefined, too. The first player U cannot win: He can only go
into the intermediate room z, from where U puts him into a which is undefined
by assumption. Similarly, the first player will not lose: If U takes him to a he
will not lose by assumption, if U takes him to b then he can avoid losing by
going to intermediate room y. There U has two options, either to move down to
b again, from where U can repeat, or to go up to a, either handing over the turn
to U or not, depending on which of the two parallel corridors he choses. Yet,
in either case U will not lose by assumption on a. Further, one can show that
if a is decided, i.e. the first or the second player has a winning strategy from
a, then no player will ever move from b into the intermediate room ¥y since he
would then give his opponent the option to move up into a under full control of
who gets the turn in a. Since a is determined the opponent will win as first or
second player, accordingly. But if room y is never used we may as well remove it
together with all corridors connecting it with b and a. This yields the same maze
as the one we get from the symmetric translation of a,b/c (see Fig. 1). Thus,
if a is determined our coding in Fig. 5 coincides with the standard symmetric
conjunction. It would be interesting to explore this further and to undertake
a systematic study of three-valued semantics of NLP in terms of games and
winning conditions.

Regarding future work it should also be
noted that we have not discussed the algo-
rithmic computation of front lines. For classi-
cal semantics this is well-known and for Stat-
echarts and Esterel these can be derived di-
rectly from the respective original work [31,
9]. The algorithmic construction of (binary)
lazy front lines has been described in [31]
in terms of a non-deterministic fixed point
search with backtracking and in [14] deter-
ministically using BDD-techniques. If the im-
mediate benefits of the game-theoretic set-
ting for improvements on the algorithmic side
may be modest it can at least guide the
search profitably as a new reference point.
Also, not having considered any composition operations for mazes we must leave
open questions of compositionality and full abstraction. This will be addressed
in future work. From [26] it is known already that the game semantics from
Ifl-M yields a fully abstract model for Statecharts under parallel composition, a
problem that had been open for a long time.

Fig. 5. The maze for the Prolog
clause c:—a,b where a is eval-
uated strictly before b.

3 This winning condition corresponds directly to the standard least fixed-point inter-
pretation employed in Prolog.
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The main contribution of this paper, so we believe, is to identify game theory
as an expressive framework for studying seemingly disparate step semantics for
synchronous languages (implementing the Synchrony Hypothesis) from a single
vantage point. The field of Statecharts semantics (see e.g. [19]) in particular has
been notoriously incoherent and controversial. We believe this is partly due to
the lack of an adequate semantic framework to manage the subtleties of causal
cycles. Game theory surely has a lot to offer here.
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