

Propositional Stabilisation Theory

Interface Types for Causality and Timing Analyses

Michael Mendler Informatics Theory Group Information Systems and Applied Computer Sciences The Otto-Friedrich-University of Bamberg

What is this talk about?

Special purpose type theory (PST) for component interfaces

- to express different forms of causal response behaviour
- resulting in different degrees of constructivity
- specifying various forms of data-dependent schedulability and timing analyses.

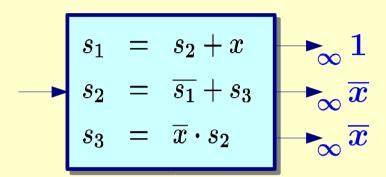
PST is

purely propositional (enriching Boolean and Ternary Alg.)

combining Time + Causality + Function

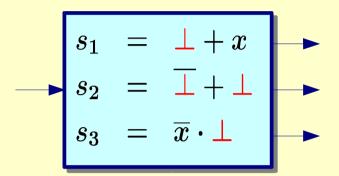
of intuitionistic, 2nd-order expressiveness.

Constructiveness Analysis -- Pain-in-the-Neck, or Food-for-Thought?



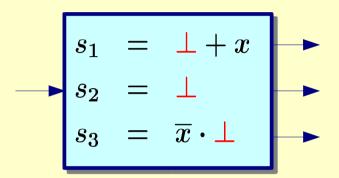
For all inputs there is a unique stationary Boolean solution. Thus, the system is logically reactive.

However, the system is not constructive.



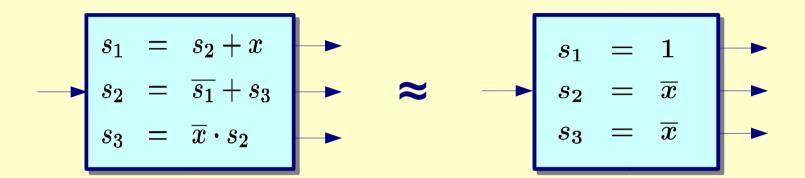
For all inputs there is a unique stationary Boolean solution. Thus, the system is logically reactive.

However, the system is not constructive.



For all inputs there is a unique stationary Boolean solution. Thus, the system is logically reactive.

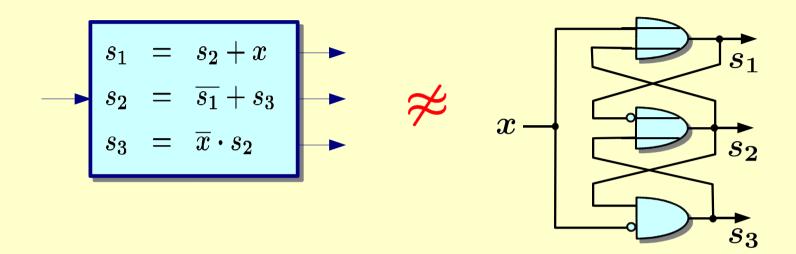
However, the system is not constructive.

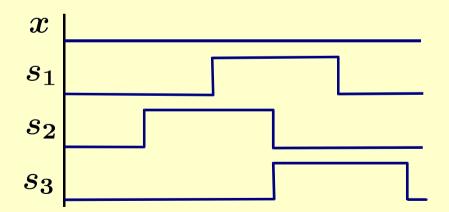


For all inputs there is a unique stationary Boolean solution. Thus, the system is logically reactive.

However, the system is not constructive.

But what if we are compiling for a component-based and distributed architecture?





Oscillation under up-bounded inertial delay scheduling [Brzozowski & Seger]

Constructiveness Analysis

The distributed, multi-threaded execution of a logically reactive P may produce anomalous behaviour:

- -- deadlocks, oscillation,
- -- non-determinism, metastability.

The problem may (often) be fixed at two levels:

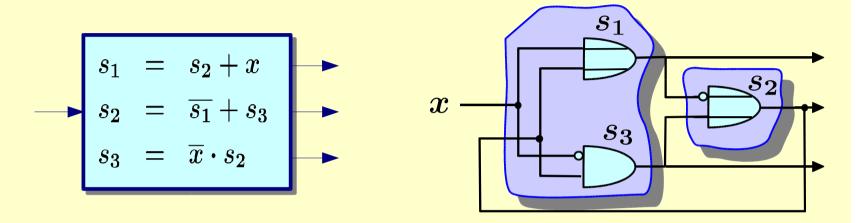
becomes constructive under arbitrary run-time

Constrain Run-time System: Find a restricted schedule which avoids anomalies and guarantees stabilisation.

Constrain Code Generator: Harden P's code so it

schedules.

Example



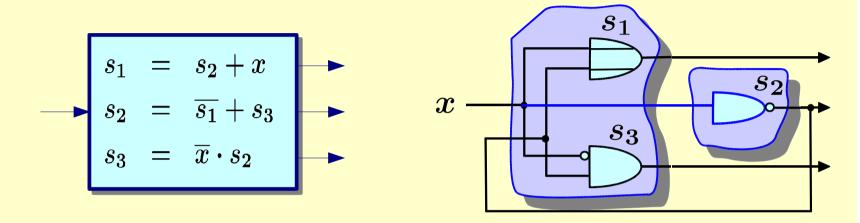
Oscillation can be avoided if we

- schedule s₁, s₃ with higher priority than s₂ or
- implement s₁, s₃ atomically, as 2in/2out complex-gate.

Then, whenever s₂ is executed, we maintain the invariant

$$s_2 = \overline{s_1} + s_3 = \overline{x}$$

Example



Oscillation can be avoided if we

- schedule s₁, s₃ with higher priority than s₂ or
- implement s₁, s₃ atomically, as 2in/2out complex-gate.

Then, whenever s₂ is executed, we maintain the invariant

$$s_2 = \overline{s_1} + s_3 = \overline{x}$$

Alternatively, we may harden the code.

Degrees of Causality

There are many "causality improving" transformations:

e.g., Boussinot, Schneider:

$$s \cdot f(s) \sqsubseteq s \cdot f(1)$$
$$s \cdot f + \overline{s} \cdot g \sqsubseteq s \cdot f + \overline{s} \cdot g + f \cdot g$$

... and there should be more.

Now,

- A Theory of Causal Interface Types
- Semantical characterisation of degrees of causality
- compositional analyses

Introducing PST Type Theory

PST — Type Theory

Types

- intuitionistic modal logic (modal operator "o")
- ○M "true" = M "valid in bounded time"

PST — Type Theory

Types

$$M ::= a = v \mid M \wedge N \mid M \vee N \mid M \supset N \mid \neg M \mid {}^{oldsymbol{o}} M$$
 $a \in \mathsf{Sig} \ \ v \in \mathbb{B}$

PST — Type Theory

Specifying Reactions

```
\mathsf{KSystem} \subseteq \mathrm{Sig} \to \mathbb{N} \to \mathbb{B} \mathsf{KSystem} \models M \text{ iff } \exists \pmb{\delta} \in [M]. \ \forall \pmb{V} \in \mathsf{KSystem}. \ \pmb{V} \models \pmb{\delta} : M
```

Semantics

- M stabilisation type (causality + function)
- $\delta \in [M]$ timing constraint (λ -terms)
- $ullet V \models oldsymbol{\delta}: M ext{ waveform } V \in \operatorname{Sig} o \mathbb{N} o \mathbb{B}$ satisfies M with timing constraint $oldsymbol{\delta} \in [M]$

PST Timing Information

Type M

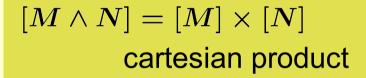
 $M \wedge N$ conjunction

 $M \vee N$ disjunction

 $M \supset N$ implication

 $\circ M$ modality

a=v atomic



$$[M \lor N] = [M] + [N]$$
 disjoint union

$$[M\supset N]=[M] o [N]$$
 function space

$$[\circ M] = \mathbb{N} imes [M]$$
 propagation delay

$$[a=v]=1$$
 no information

PST Waveform Specification

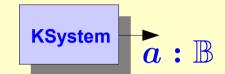
$$V(a)\downarrow_t v$$
 a "Signal a stabilises to value v in waveform V as from time t "

 $oldsymbol{V}^{oldsymbol{\delta}}$ is the time-shifted waveform $V^{\delta}(a)(t) = V(a)(t+\delta)$

```
V \models 0: a = v \quad \text{iff} \quad V(a) \downarrow_0 v
V \models (c,d): M \land N \quad \text{iff} \quad V \models c: M \text{ and } V \models d: N
V \models (V \models c) \quad V \models
```

Stabilisation Types for a Single Signal

In how many ways can we say an output responds with a Boolean?



predicate logic

$$\forall V. \; \exists v. \; \exists t. \; V(a) \downarrow_t v$$

$$\exists v. \ \forall V. \ \exists t. \ V(a) \downarrow_t v$$

$$\exists t. \ \forall V. \ \exists v. \ V(a) \downarrow_t v$$

$$\exists v. \ \exists t. \ \forall V. \ V(a) \downarrow_t v$$

$$\forall V. \; \exists v. \; \forall t. \; V(a) \downarrow_t v$$

$$\exists v. \ \forall V. \ \forall t. \ V(a) \downarrow_t v$$

PST stabilisation type

$$\neg\neg(a=1\oplus a=0)$$

$$\neg \neg a = 1 \lor \neg \neg a = 0$$

$$\circ (a=1 \oplus a=0)$$

$$\circ a = 1 \lor \circ a = 0$$

$$a=1 \oplus a=0$$

$$a=1 \lor a=0$$

$$\phi \oplus \psi =_{\mathrm{df}} ((\phi \supset \psi) \supset \psi) \land ((\psi \supset \phi) \supset \phi)$$

Three Levels of Signal Evaluation

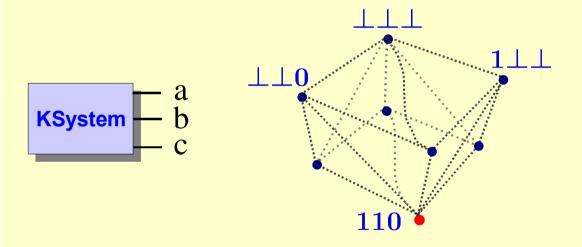
$$f: \mathbb{B}^2 o \mathbb{B}$$
 Boolean function $f^\infty: \mathbb{K}^2 o \mathbb{K}$ ternary extension of f

predicate logic

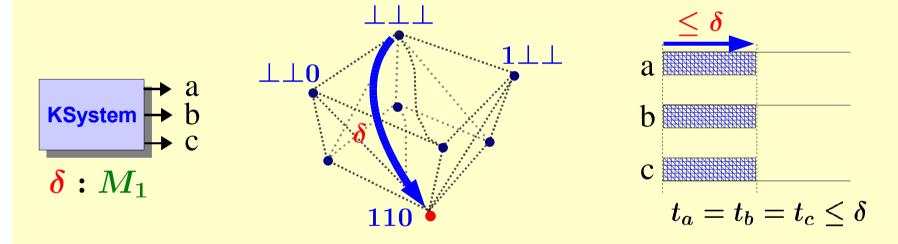
PST stabilisation type

$$\forall V. \exists t. \ V(c) \downarrow_t f^{\infty}(V^{\infty}(a), V^{\infty}(b)) \qquad \neg \neg (c = f(a, b))$$
$$\exists t. \forall V. \ V(c) \downarrow_t f^{\infty}(V^{\infty}(a), V^{\infty}(b)) \qquad \circ (c = f(a, b))$$
$$\forall t. \forall V. \ V(c) \downarrow_t f^{\infty}(V^{\infty}(a), V^{\infty}(b)) \qquad c = f(a, b)$$

In how many "causal ways" can we produce a unique stationary response (logical correctness)?

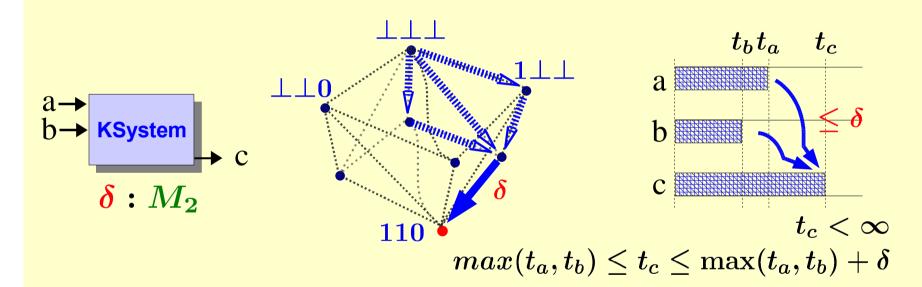


In how many "causal ways" can we produce a unique stationary response (logical correctness)?



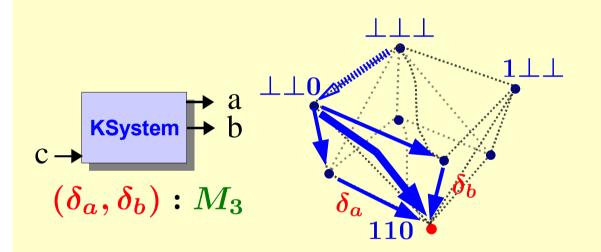
$$M_1 = \circ(a=1 \land b=1 \land c=0) \land \ (a=1 \supset b=1) \land (b=1 \supset c=0) \land \ (c=0 \supset a=1)$$

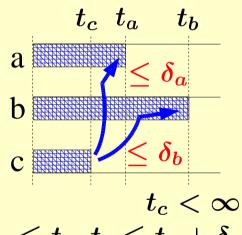
In how many "causal ways" can we produce a unique stationary response (logical correctness)?



$$egin{array}{lll} M_2 &=& ((a{=}1 \land b{=}1) \supset \circ c{=}0) \land \ & (c{=}0 \supset (a{=}1 \land b{=}1)) \land \neg \neg c{=}0 \end{array}$$

In how many "causal ways" can we produce a unique stationary response (logical correctness)?



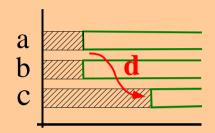


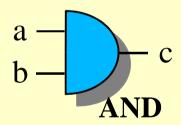
$$t_c \le t_a, t_b \le t_c + \delta_a$$

$$M_3 = (c=0 \supset (\circ a=1 \land \circ b=1)) \land \\ ((a=1 \lor b=1) \supset c=0) \land \neg \neg c=0$$

Interfaces for Causality and Timing

d:AND data-independent "topological" model



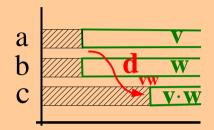


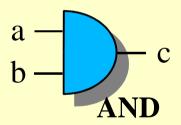
d timing information

$$d \in Nat \approx [AND]$$

$$((a=1 \oplus a=0) \land (b=1 \oplus b=0)) \supset \circ (c=1 \oplus c=0)$$

d:AND data-dependent "topolocial" model



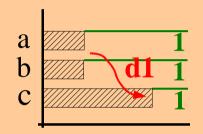


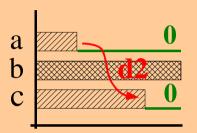
d timing information

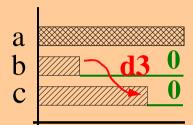
$$\mathbf{d} = (\mathbf{d}_{00}, \mathbf{d}_{01}, \mathbf{d}_{10}, \mathbf{d}_{11}) \in \mathbf{Nat}^4 \approx [\mathbf{AND}]$$

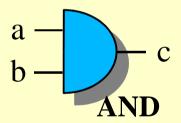
$$((a=1 \lor a=0) \land (b=1 \lor b=0)) \supset \circ (c = a \cdot b)$$

d:AND data-dependent "floating mode" model







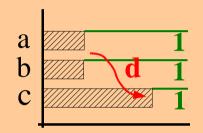


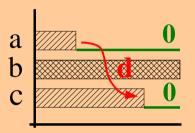
d timing information

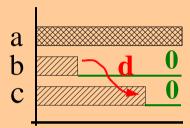
$$d = (d1, d2, d3) \in Nat^3 \approx [AND]$$

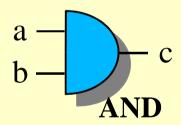
$$((a=1 \land b=1) \lor a=0 \lor b=0) \supset \circ (c=a \cdot b)$$

d:AND data-independent "floating mode" model







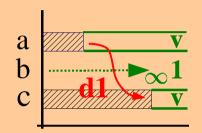


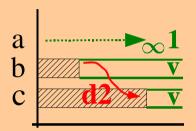
d timing information

$$d \in Nat \approx [AND]$$

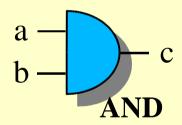
$$((a=1 \land b=1) \oplus a=0 \oplus b=0) \supset \circ (c=a \cdot b)$$

d:AND data-dependent "static sensitization" model









d timing information

$$\mathbf{d} = (\mathbf{d1}, \mathbf{d2}) \in \mathbf{Nat}^2 \approx [\mathbf{AND}]$$

$$((\neg \neg a=1 \land b=v) \lor (a=v \land \neg \neg b=1)) \supset \circ (c=v)$$

Summary PST

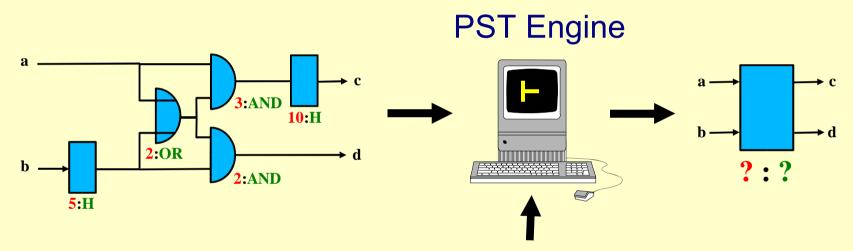
- PST types are intuitionistic, fully compatible with ternary model.
- The difference between reactive and stationary behaviour is the difference between M and ¬¬M.
- A fixed stationary behaviour ¬¬M can be implemented by various reactive types (causal/timing models) M₁, M₂, M₃ ..., such that

$$\neg\neg M_1 \equiv \neg\neg M, \quad \neg\neg M_2 \equiv \neg\neg M, \quad \neg\neg M_3 \equiv \neg\neg M, \dots$$

PST can characterise different timing analyses...

PST Timing Analyses

PST Timing Analysis



semantical or syntactical deduction in PST type synthesis and type transformation

Malta, 21-25 Nov. 2005 41

Conclusion

PST Reactiveness Analysis — Advantages

- Adjustable granularity of data abstraction
- Compositionality (= "divide and conquer" analyses)
- Precision
 - semantical meaning of computed delays is specified uniquely (= data type, type checking)
- "Lossless" heuristics

- free exploration of search space through combination of partial (i.e., incorrect or suboptimal) analyses

PST Reactiveness Analysis — Results

- Deduction in PST captures correct and exact timing analyses for all *elementary* combinational stabilisation models.
- In this fragment a number of well-known analyses can be characterised:

```
Topological
Statical [Benkoski et.al. '90]
Polynomial [Huang et.al. '91]
Floating [Chen&Du '90, Devadas et.al. '91]
Viability [McGeer '89]
```

Open Problems — Projects, PhD Topics

Theory

Complete characterisation of PST expressiveness Axiomatization

Implementation

Efficient data structures for fragments of PST Toolbox of composable (partial) heuristics

Application

Explore links: PST analyses – degrees of causality – distributed code generation

Malta, 21-25 Nov. 2005 58

Literature

- M. Fairtlough, M. Mendler, Propositional Lax Logic. Information and Computation, 137(1), Aug. 1997.
- M. Mendler, Combinational timing analysis in intuitionistic propositional logic. Formal Methods in System Design, 17(1), Aug. 2000.
- M. Mendler, Characterising combinational timing analyses in intuitionistic modal logic. Logic Journal of the IGPL, 8(6), Nov. 2000.
- M. Fairtlough, M. Mendler, Intensional completeness in an extension of Gödel-Dummet Logic. Studia Logica, Vol.73, Jan. 2003.